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The Evolving Data-Rich Astronomy

. Dlgltal sky surveys have brought us into the Terascale
regime, and stimulated: J N

— Extensive use of databases in astronomy
— The Virtual Observatory concept

— Incipient data-mining-based astronomy =T
« Synoptic digital sky surveys — i.e., panoramic cosmic
cinematography — are moving us into the Petascale regime
— The same old challenges, only more so

— New challenges: real time response, event classification, data
mining in the time domain...




Astronomy in the Time Domain E

* A major new growth area of astrophysics

* Driven by the new generation of large digital
synoptic sky surveys, leading to LSST, SKA, etc.

* Rich phenomenology, from the Solar system to
cosmology and extreme relativistic physics

— For some phenomena, time domain information is a
key to the physical understanding

* Transformational in many ways:

Static —> Dynamic sky

Sources —> Events

» Real-time discovery in massive data streams poses
new challenges in automated classification,
anomaly detection, decision making, etc.
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The Tsunami Wave
of the Future

 Now: data streams of ~0.1 TB/
night, ~ 10? transients / night :
(CRTS, PQ, PTF, various SN s g0 o)
surveys, asteroid surveys) s

* Forthcoming on a time scale ~ 1 - 5 years: ~1 TB /
night, ~10* transients / night (PanSTARRS, i
Skymapper, VISTA, VST...) A major,

o qualitative
* Forthcoming in ~ 8 - 10 years: LSST, ~30 TB / change!
night, ~ 105 - 10° transients / night )
* Observational follow-up needs: Transient
— Rapid photometric/positional monitoring classification

— Rapid spectroscopy technologies
— Information/computation infrastructure are essential




Event Classification is a Hard Problem 0

/.
>

Classification of transient events 1s essential for )
their astrophysical interpretation and uses

— Must be done in real time and iterated dynamically
Human classification is already unsustainable, and
will not scale to the future Petascale data streams
This is hard:

— Data are sparse and heterogeneous: feature vector
approaches do not work; using Bayesian approach

— Completeness vs. contamination @

— Follow-up resources are expensive and/or limited: only
the most interesting events

— Iterate classifications dynamically as new data come in

Traditional DP pipelines do not capture a lot of the relevant
contextual information, prior/expert knowledge, etc.

Automated Detection of Artifacts
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Automated classification and rejection of artifacts
masquerading as transient events in the PQ survey Lead-
pipeline, using a Multi-Layer Perceptron ANN C. Donalek




Towards the Automated Event Classification

Follow-up
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the data themselves) is essential

available resources and their cost

A dynamical, iterative system

Incorporation of the contextual information (archival, and from

Automated prioritization of follow-up observations, given the
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Bayesian Networks (BN)

Bayesian methodology is desirable and attractive for this task,
since it can deal with missing or heterogeneous data

Phenomenology

BN is a probabilistic graphical
model represented through Class
Directed Acyclic Graphs (DAG),
whose nodes represent
variables, and the
missing arcs represent

conditional
independence A \
assumptions . @ @ @ @ é
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Gaussian Process Regression (GPR)

Graph of a mira star lightcurve fitted using GP Regressiol
7 . . . : .

A Mira variable star light
curve fitted using GPR

o

Mira star classifier results, sample_size=4, samples_per_graph=10
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2D Light Curve Priors

* For any pair of light curve 8
measurements, compute the A¢
and Am, make a 2D histogram

— Note: N independent measurem.
generate N? correlated data points

* Compare with the priors for
different types of transients

A magnitude

* Repeat as more measurements
are obtained, for an evolving,
constantly improving classif.

Lead: B. Moghaddam

Fusion Module

Colors and light curve information can be combined in one
network. This "fusion module” combines the probabilistic
results from each constituent classifier

GPR BN NN
/ -
-
-
D @
FUSION MODULE
Exploring a variety of i Markov Logic Networks,
techniques for optimal Diffusion Maps, Multi-Arm
classification fusion: q)class Bandit, Sleeping Expert...




Harvesting the Human Pattern Recognition
Recognizing the
artifacts (false ety & , - ;
transients) LIRS | 45 L

» Meteqr streak

Contextual ; _
information g - Wandering|reflection’
is essential

A more sophisticated case uses a prior (expert) knowledge:

Star-like transient apparently
associated with a non-coincident
galaxy a likely Supernova
Spiral host galaxy
a possible Type 11

How to capture this and teach a machine to do the same thing?

AstroCollation: Towards Harvesting Human
Pattern Recognition and Domain Expertise

Input Event Streams
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Use Case Scenarios:

(a) Archival data on potential
host galaxies provides the
more likely choice,

(b) Presence of a radio source
discriminates between a CV
and a blazar
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SkyDlsoovery is a Caltech Virtual Asu'onomy initiative You are logged in as djorgovski. Log out.
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Is there a satellite trail?

{ ves J No J Unsure L Help

Bold lines, such as those shown below, are caused by satellites in orbit and can confuse the detection software. ISthersa satellite trail in any of the
images?
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Images of ES0145-16 RA= 327.29583 Dec=-59.03694
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Lead: A. Drake




Developing an Interface Between
Carbon-Based and Silicon-Based Minds

isA/ isAssociatedWith
ismnlmageOf

Human-annotated images (via SkyDiscovery.org)
= Semantic descriptors
= Machine processing
=  Novel algorithms
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Automating the Optimal Follow-Up

For the potentially most interesting events, what type of follow-up
data has the greatest potential to discriminate among the competing

event classes?
Telescope 1: P(x,,y | x,)

Updated P(y | x,, x,)

Initial P(y | x,)

H=131
Request the optimal

follow-up observations % e l.-l1. 7I9I
from the available assets ey ///\/’ o

H=1.82

Summary
Real-time mining of massive data streams
offers great opportunities and challenges

— Synoptic sky surveys and real-time astronomy are
an excellent science & technology testbed

We are making progress on real-time,
automated, iterated event classification
— Not your grandma'’s classification problem!

— Sparse and heterogeneous data, real time,
dynamically iterated, resource-limited

— Next: an automated decision making for optimal
follow-up observations

Harvesting human pattern recognition skills |.
and expertise using citizen science

A broader relevance for a real-time mining
of massive data streams




