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Introduction

This presentation is organized as followed :

1. Description of the SimDB/DM implementation we made
for the service ”Deuvo”

2. Description of the successive steps we followed to try to
build a DAL implementation to query the DM

This presentation is intended to :

1. Describe the experimentations we have made since last
inter-op on SimDB DM and DAL

2. Present difficulties and problems we have encountered

3. Discuss solutions we have found to solve this problems
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About DEUVO

DEUVO : ”Dark Energy Universe Virtual Observatory”

The project aims at investigating the imprints of dark energy
on cosmic structure formation through very high resolution
cosmological simulations



I 9 simulations with 1
billion particles

I 5 000 000 CPU
hours (600 years)

I 40 Tb data
produced

I Post-processing :
500 000 halos /
simulation



DM Implementation

Based on VO-Paris past experiences (StarFormat and PDR
implementation)

I based on vo-urp

I custom ingestion pipeline for (meta-)data loading
I 1 postprocessing produce more than 100 000 products

(halos)
I Very high RAM/CPU requirements to load (meta-)data

into DB



DM Implementation
Ingestion pipeline
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Global Architecture



Interface specification
I Common queries using JDBC implementation (cf

R.Wagner SimDAP operations proposals, 2009
Strasbourg)

I getProjectList()
I getProtocolList() (→ listProtocols)
I getInputParameters(protocolId)
I ...

I rawQuery() function (→ queryData)



Deuvo UI simulation search



Deuvo UI output formats



Deuvo UI product search with contraints



TopCat visualisation from Deuvo data through

Samp protocol



Problems and solutions

Problems :

I SimDB DataModel implies a lot of high cost JOIN (in
terms of CPU/time) when implemented using a
relational design (ex : product × statisticalSummary)

I Basic interface (too much), with very few predefined
queries and not IVOA Standard compliant (neither REst
nor TAP)

Solutions :

I Rewrite SQL queries to fit postgresql optimizer choices

I Tune postgresql (query optimizer, memory management,
disk i/o)

I Define proper indexes

I Have queries go through protocol side of the DM instead
of experiment one



Example of products query matching only 4

constraints...
Each constraint addition implies an heavy JOIN (x,y,z,mass)
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Creation of a first TAP access layer 1/3
Why and How ?

I To make SimDB relationnal database implementation
queryable :

I in terms of performance
I in terms of ease of query writing

I Through an implementation of a subset of the
TheoryGroup proposal at Nara (G.Lemson)

I Table orthogonalization using automated procedure
(script)

I product × statisticalsummary
I protocol × inputparameter



Creation of a first TAP access layer 2/3
Orthogonalization principle



Creation of a first TAP access layer 3/3
Problems

I The solution is not scalable
I as many columns as the number of inputparameter or

statisticalsummary associated with product/protocol
I Can be ≫ 100 !!
I Impossible to describe queryable columns list to user
I Impossible to write queries against such a table with

reasonable ease

I Need custom/specific TAP table definition for each
particular use of SimDB

I UI dependant, not SimDB dependant

It appears

that SimDB/DM implementation using a relationnal DB is not
efficient to provide reasonably fast user-friendly access to sim-
ulation (meta)data



Output of build tap products views.py





Prototype of a raw data access RESTful webservice
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Proposals to solve current implementation

problems

R.Wagner, Strasbourg 2009 :
I Queries for existing data are really queries against the

data model, not its implementation.
I Using the data model doesnt require managing a

relational database.

Our own experience :
I DM is efficient to describe data in an object way (nested

structures → UML compositions).
I Tries to fit the object oriented DM in tabular structures :

I makes load and query job difficult
I require (too much) successive data transformations

It appears that

Document oriented DB (or object oriented), closer to the DM
design, could be the solution



Think about document oriented DB I

Pro :

I no need for TAP or materialized views against the main
SimDB/DM implementation

I Easy and consistent data organisation (make query easy)

I Solve composition problem by removing referential
integrity needs

I Easily usable with many languages

I Some solutions use BSON (and so are natively
JSON-capable)

I JSON could be used through a new ingestion pipeline
directly from simulation (JSON output or XML+XSLT)
to JSON Document oriented SimDB/DM
implementation



Think about document oriented DB II
I Easily scalable (allow MapReduce, GridFS use)

I comply with Rick Wagner recommendation in Strasbourg
IVOA inter-op : to follow a nested elements way

Cons :

I Not a relationnal tabular structure −→ ease of a SimTAP
implementation (it’s noSQL, so noADQL...) ?

I No validation layer in standard for JSON format



Example of dodb ←→ tabular query mapping
From the mongodb project



How could document oriented DB solve ingestion

problem ?



How could document oriented DB solve query

problem ?



To Do
I This solution needs a prototype implementation to

evaluate :
I Queries performance
I Usability (in terms of ease of query writing, ability to fit

IVOA requirements)



Conclusion
I DM is robust, abstract enough to deal with all the

simulations we adressed

I The first DM implementation (led by vo-urp) is effective
to turn DM into technical reality but not to allow realistic
interactive query job.

I Implementations of the DM using a relationnal/tabular
design have shown some limitations

I Too many high cpu cost JOIN between tables (for
queries but also data loading)

I Difficulties to implement a DAL layer based on tables (cf
orthogonalization tests)

I Scalability



Conclusion
I Today we can take two different directions

I Continue with the relational way, in this case we have to
deal with the JOIN problem which seems to be difficult
to solve since inherent to tabular design.

I Prototype a new implementation using a design closer to
the object oriented nature of the SimDB/DM (job
currently being done at Meudon Observatory).
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