
SimDB implementation (DEUVO) and

SimDAL discussions
Observatoire de Paris / VO-Paris Data Centre

David Languignon, Benjamin Ooghe, Nicolas Moreau, Yann
Rasera, Franck Le Petit, Jean-Michel Alimi

Napoli, Italy

May 16, 2011

Introduction

This presentation is organized as followed :

1. Description of the SimDB/DM implementation we made
for the service ”Deuvo”

2. Description of the successive steps we followed to try to
build a DAL implementation to query the DM

This presentation is intended to :

1. Describe the experimentations we have made since last
inter-op on SimDB DM and DAL

2. Present difficulties and problems we have encountered

3. Discuss solutions we have found to solve this problems

Table of contents
Introduction

SimDB DM Implementation
About DEUVO
DM Implementation

SimDB DAL implementation, 1st try
Global Architecture
Interface specification
Problems and solutions

SimDB DAL implementation, 2nd try
Creation of a first TAP access layer

Why and How ?
Orthogonalization principle

SimDB implementation, next step
Proposals to solve current implementation problems
How could document oriented DB solve ingestion problems ?
How could document oriented DB solve query problem ?
To Do

Conclusion

Introduction

SimDB DM Implementation
About DEUVO
DM Implementation

SimDB DAL implementation, 1st try

SimDB DAL implementation, 2nd try

SimDB implementation, next step

Conclusion

About DEUVO

DEUVO : ”Dark Energy Universe Virtual Observatory”

The project aims at investigating the imprints of dark energy
on cosmic structure formation through very high resolution
cosmological simulations

I 9 simulations with 1
billion particles

I 5 000 000 CPU
hours (600 years)

I 40 Tb data
produced

I Post-processing :
500 000 halos /
simulation

DM Implementation

Based on VO-Paris past experiences (StarFormat and PDR
implementation)

I based on vo-urp

I custom ingestion pipeline for (meta-)data loading
I 1 postprocessing produce more than 100 000 products

(halos)
I Very high RAM/CPU requirements to load (meta-)data

into DB

DM Implementation
Ingestion pipeline

Introduction

SimDB DM Implementation

SimDB DAL implementation, 1st try
Global Architecture
Interface specification
Problems and solutions

SimDB DAL implementation, 2nd try

SimDB implementation, next step

Conclusion

Global Architecture

Interface specification
I Common queries using JDBC implementation (cf

R.Wagner SimDAP operations proposals, 2009
Strasbourg)

I getProjectList()
I getProtocolList() (→ listProtocols)
I getInputParameters(protocolId)
I ...

I rawQuery() function (→ queryData)

Deuvo UI simulation search

Deuvo UI output formats

Deuvo UI product search with contraints

TopCat visualisation from Deuvo data through

Samp protocol

Problems and solutions

Problems :

I SimDB DataModel implies a lot of high cost JOIN (in
terms of CPU/time) when implemented using a
relational design (ex : product × statisticalSummary)

I Basic interface (too much), with very few predefined
queries and not IVOA Standard compliant (neither REst
nor TAP)

Solutions :

I Rewrite SQL queries to fit postgresql optimizer choices

I Tune postgresql (query optimizer, memory management,
disk i/o)

I Define proper indexes

I Have queries go through protocol side of the DM instead
of experiment one

Example of products query matching only 4

constraints...
Each constraint addition implies an heavy JOIN (x,y,z,mass)

Introduction

SimDB DM Implementation

SimDB DAL implementation, 1st try

SimDB DAL implementation, 2nd try
Creation of a first TAP access layer

Why and How ?
Orthogonalization principle

SimDB implementation, next step

Conclusion

Creation of a first TAP access layer 1/3
Why and How ?

I To make SimDB relationnal database implementation
queryable :

I in terms of performance
I in terms of ease of query writing

I Through an implementation of a subset of the
TheoryGroup proposal at Nara (G.Lemson)

I Table orthogonalization using automated procedure
(script)

I product × statisticalsummary
I protocol × inputparameter

Creation of a first TAP access layer 2/3
Orthogonalization principle

Creation of a first TAP access layer 3/3
Problems

I The solution is not scalable
I as many columns as the number of inputparameter or

statisticalsummary associated with product/protocol
I Can be ≫ 100 !!
I Impossible to describe queryable columns list to user
I Impossible to write queries against such a table with

reasonable ease

I Need custom/specific TAP table definition for each
particular use of SimDB

I UI dependant, not SimDB dependant

It appears

that SimDB/DM implementation using a relationnal DB is not
efficient to provide reasonably fast user-friendly access to sim-
ulation (meta)data

Output of build tap products views.py

Prototype of a raw data access RESTful webservice

Introduction

SimDB DM Implementation

SimDB DAL implementation, 1st try

SimDB DAL implementation, 2nd try

SimDB implementation, next step
Proposals to solve current implementation problems
How could document oriented DB solve ingestion problems ?
How could document oriented DB solve query problem ?
To Do

Conclusion

Proposals to solve current implementation

problems

R.Wagner, Strasbourg 2009 :
I Queries for existing data are really queries against the

data model, not its implementation.
I Using the data model doesnt require managing a

relational database.

Our own experience :
I DM is efficient to describe data in an object way (nested

structures → UML compositions).
I Tries to fit the object oriented DM in tabular structures :

I makes load and query job difficult
I require (too much) successive data transformations

It appears that

Document oriented DB (or object oriented), closer to the DM
design, could be the solution

Think about document oriented DB I

Pro :

I no need for TAP or materialized views against the main
SimDB/DM implementation

I Easy and consistent data organisation (make query easy)

I Solve composition problem by removing referential
integrity needs

I Easily usable with many languages

I Some solutions use BSON (and so are natively
JSON-capable)

I JSON could be used through a new ingestion pipeline
directly from simulation (JSON output or XML+XSLT)
to JSON Document oriented SimDB/DM
implementation

Think about document oriented DB II
I Easily scalable (allow MapReduce, GridFS use)

I comply with Rick Wagner recommendation in Strasbourg
IVOA inter-op : to follow a nested elements way

Cons :

I Not a relationnal tabular structure −→ ease of a SimTAP
implementation (it’s noSQL, so noADQL...) ?

I No validation layer in standard for JSON format

Example of dodb ←→ tabular query mapping
From the mongodb project

How could document oriented DB solve ingestion

problem ?

How could document oriented DB solve query

problem ?

To Do
I This solution needs a prototype implementation to

evaluate :
I Queries performance
I Usability (in terms of ease of query writing, ability to fit

IVOA requirements)

Conclusion
I DM is robust, abstract enough to deal with all the

simulations we adressed

I The first DM implementation (led by vo-urp) is effective
to turn DM into technical reality but not to allow realistic
interactive query job.

I Implementations of the DM using a relationnal/tabular
design have shown some limitations

I Too many high cpu cost JOIN between tables (for
queries but also data loading)

I Difficulties to implement a DAL layer based on tables (cf
orthogonalization tests)

I Scalability

Conclusion
I Today we can take two different directions

I Continue with the relational way, in this case we have to
deal with the JOIN problem which seems to be difficult
to solve since inherent to tabular design.

I Prototype a new implementation using a design closer to
the object oriented nature of the SimDB/DM (job
currently being done at Meudon Observatory).

	Introduction
	SimDB DM Implementation
	About DEUVO
	DM Implementation

	SimDB DAL implementation, 1st try
	Global Architecture
	Interface specification
	Problems and solutions

	SimDB DAL implementation, 2nd try
	Creation of a first TAP access layer

	SimDB implementation, next step
	Proposals to solve current implementation problems
	How could document oriented DB solve ingestion problems ?
	How could document oriented DB solve query problem ?
	To Do

	Conclusion

