SimDB implementation (DEUVO) and SimDAL discussions Observatoire de Paris / VO-Paris Data Centre

David Languignon, Benjamin Ooghe, Nicolas Moreau, Yann Rasera, Franck Le Petit, Jean-Michel Alimi

Napoli, Italy

May 16, 2011

Introduction

This presentation is organized as followed :

- 1. Description of the SimDB/DM implementation we made for the service "Deuvo"
- 2. Description of the successive steps we followed to try to build a DAL implementation to query the DM
- This presentation is intended to :
 - 1. Describe the experimentations we have made since last inter-op on SimDB DM and DAL
 - 2. Present difficulties and problems we have encountered
 - 3. Discuss solutions we have found to solve this problems

Table of contents

Introduction

SimDB DM Implementation

About DEUVO DM Implementation

SimDB DAL implementation, 1st try

Global Architecture Interface specification Problems and solutions

SimDB DAL implementation, 2nd try

Creation of a first TAP access layer Why and How ? Orthogonalization principle

SimDB implementation, next step

Proposals to solve current implementation problems How could document oriented DB solve ingestion problems ? How could document oriented DB solve query problem ? To Do

Conclusion

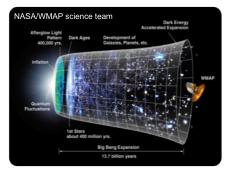
Introduction

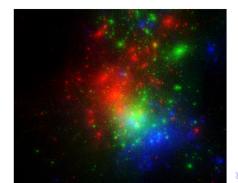
SimDB DM Implementation About DEUVO DM Implementation

SimDB DAL implementation, 1st try

SimDB DAL implementation, 2nd try

SimDB implementation, next step

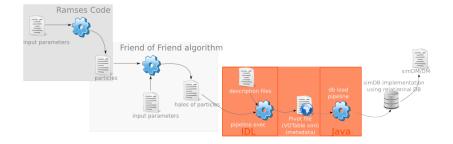

Conclusion


About DEUVO

DEUVO : "Dark Energy Universe Virtual Observatory"

The project aims at **investigating** the imprints of dark energy on cosmic structure formation **through very high resolution cosmological simulations**

- 9 simulations with 1 billion particles
- 5 000 000 CPU hours (600 years)
- 40 Tb data produced
- Post-processing : 500 000 halos / simulation


DM Implementation

Based on VO-Paris past experiences (StarFormat and PDR implementation)

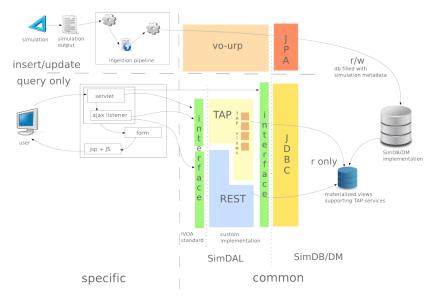
- based on vo-urp
- custom ingestion pipeline for (meta-)data loading
 - 1 postprocessing produce more than 100 000 products (halos)
 - Very high RAM/CPU requirements to load (meta-)data into DB

DM Implementation

Ingestion pipeline

Introduction

SimDB DM Implementation


SimDB DAL implementation, 1st try Global Architecture Interface specification Problems and solutions

SimDB DAL implementation, 2nd try

SimDB implementation, next step

Conclusion

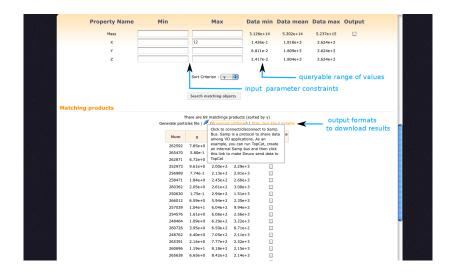
Global Architecture

Interface specification

 Common queries using JDBC implementation (cf R.Wagner SimDAP operations proposals, 2009 Strasbourg)

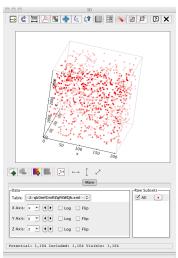
- getProjectList()
- getProtocolList() (\rightarrow listProtocols)
- getInputParameters(protocolld)
- **١**...
- rawQuery() function (\rightarrow queryData)

Deuvo UI simulation search


Deuvo UI output formats

	WQh.txt	fCmflZqFl	🖹 qk0m	000
-	id	z	У	×
	250630	1510.1	294.18	0.17529
	251826	2811.1	1144.4	0.52588
	265470	1315.7	138.96	0.58008
	256989	2814.4	212.69	0.77417
	248464	3219.3	628.97	1.0867
	254310	2383.8	1178.6	1.5623
	254576	2556.3	606.19	1.6121
	258471	2596.6	245.47	1.8364
	251306	2058.4	1675.3	1.9236
	250966		1664.3	2.0024
	260362	3004.2	260.51	2.0488
	255570	2651.0	2248.9	2.0796
	265391	2323.3	777.05	2.1372
	265882	3029.1	909.49	2.7126
	252853		2367.7	3.0339
	266038	2391.2	915.8	3.1089
	254117	1092.6	1079.6	3.9165
	260726	871.47	650.16	3.9545
	260004	2551.9	3256.1	4.1951
	252685	3266.3	1599.2	4.2575
	262539	926.02	2647.3	4.2671
	257477	168.37	3355.4	4.2781
	253241	1070.0	1913.6	4.3529
	248762	2109.4	704.97	4.3986
	259310	2734.2	1564.0	4.538
	263690	2830.3	2886.4	5.1833
	259857	3160.6	3090.7	5.36
	248361	882.8	2757.3	5.4256
	255813	1904.8	1993.2	5.6251
	255079	1067.4	3571.7	5.8473
	264206	3515.5	1035.1	6.2653
	266012	2345.5	593.93	6.5904
	263387	1762.6	3068.1	6.6312
L.	265638	2141.7	841.6	6.6543

- <VOTABLE xsi:noNamespaceSchemaLocation=" xmlns:http://www.ivco.net/xml/VOTable-1.2.xsd" version="1.2"> - <RESOURCE name="Result set (halos)" type="results"> - <TABLE name="results"> - <DESCRIPTION> List of properties of objects matchings user criterions </DESCRIPTION> <FIELD name="x" datatype="double"/> <FIELD name="v" datatype="double"/> <FIELD name="2" datatype="double"/> <FIELD name="id" datatype="double"/> - <DATA> - «TABLEDATA» - <TR> <TD>0.17529</TD> <TD>294.18</TD> <TD>1510.1</TD> <TD>250530<TD> </TR> -<TR> <TD>0.52588</TD> <TD>1144.4</TD> <TD>2811.1</TD> <TD>251826</TD> </TR> - CTRN <TD>0.58008</TD> <TD>138.96</TD> <TD>1315.7</TD> <TD>265470</TD> </TR>


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Deuvo UI product search with contraints

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = 三 - のへで

TopCat visualisation from Deuvo data through Samp protocol

Problems and solutions

Problems :

- SimDB DataModel implies a lot of high cost JOIN (in terms of CPU/time) when implemented using a relational design (ex : product × statisticalSummary)
- Basic interface (too much), with very few predefined queries and not IVOA Standard compliant (neither REst nor TAP)

Solutions :

- Rewrite SQL queries to fit postgresql optimizer choices
- Tune postgresql (query optimizer, memory management, disk i/o)
- Define proper indexes
- Have queries go through protocol side of the DM instead of experiment one

Example of products query matching only 4 constraints...

Each constraint addition implies an heavy JOIN (x,y,z,mass)

```
String salOuery = " " +
"from result r. " +
"(select p.id, p.containerid, ss.numericvalue_value as x " +
    "from product p, statistical summary ss, property prop " +
    "where prop.id=ss.axisid and prop.name = 'x' " +
    "and ss.containerid=p.id) as xt. " +
"(select p.id,ss.numericvalue_value as y " +
    "from product p, statistical summary ss, property prop " +
    "where prop.id=ss.axisid and prop.name = 'v' " +
    "and ss.containerid=p.id) as vt. " +
"(select p.id,ss.numericvalue_value as z " +
    "from product p, statisticalsummary ss, property prop " +
    "where prop.id=ss.axisid and prop.name = 'z' " +
    "and ss.containerid=p.id) as zt. " +
"(select p.id,ss.numericvalue_value as mass " +
    "from product p, statistical summary ss, property prop " +
    "where prop.id=ss.axisid and prop.name = 'mass' " +
    "and ss.containerid=p.id) as masst " +
"where r.containerid=:experimentid and xt.containerid=r.id and xt.id=yt.id and yt.id=zt.id and zt.id=masst.id";
```

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Introduction

SimDB DM Implementation

SimDB DAL implementation, 1st try

SimDB DAL implementation, 2nd try Creation of a first TAP access layer Why and How ? Orthogonalization principle

SimDB implementation, next step

Conclusion

Creation of a first TAP access layer 1/3

Why and How ?

- To make SimDB relationnal database implementation queryable :
 - in terms of performance
 - in terms of ease of query writing
- Through an implementation of a subset of the TheoryGroup proposal at Nara (G.Lemson)
 - Table orthogonalization using automated procedure (script)

- **product** × statisticalsummary
- ► **protocol** × inputparameter

Creation of a first TAP access layer 2/3

Orthogonalization principle

standard simDB configuration

experiment id bigint	input parameter name character varying(255)	input parameter value double precision	unit character va	rying(32)										
14	Baryon density	0.044	dimensionl	.ess										
L4	Matter density	0.23	dimensionl	ess					one t	table per	protocol			
L4	Dark energy parame	0.5	dimensionl	ess										
.4	Boxlength	2592	con Mpc/h				deuvodb=#	Vdt cie	tan +					
.4	npart_dm	1073742000	dimensionl	ess		,	icuvoub-#	(01 510	icap.*	List of rela	ations			
.4	Dark energy type	2	dimensionl	ess			Schema			Nane		Туре	Owner	
.4	Dark energy densit	0.77	dimensionl	ess			+				+		+	
14	signa8	-0.66	dimensionl	ess			simtap			iend_halo_dete	ection_fof1	table	deuvodb_s	
.4	Highest AMR level	16	dimensionl	ess		\	simtap 2 rows)	proto_r	anses3_deus	5		table	deuvodb_s	uper
4	ns	0.963	dimensionl	ess		1	2 10#37							
.4	h	72	dimensionl	ess		- \-	ieuvodb=#							
L4	Lowest AMR level	10	dimensionl	ess		Ì								
L4	Radiation density	0	dimensionl	ess		1								
.4	Resolution	1024	dimensionl	ess										
						,								
igint bigint de	dark_energy_typ di ra radial character varyinç ch di chara	cter varyini ch do character	varying ch dou	dark_energy_par o character varying o	t do character varying c	t doub	character vary	ring of double	baryon_density_r b character varying o	ch doub character vi c	double character va	uryini ch do	character varying o	t double cl
	dimensionless 8 dimen	vsionless 16 dimension		dimensionless	72 dimensionless		dimension1a		dimensionless	2592 com Mpc /h 2592 com Mpc /h	-0.79 dimension		dimensionless	0 963 /1
		istonless 16 dimensio			72 dimensionless				dimensionless		-0.05 dimension		dimensionless	

orthogonalized SimTAP configuration

Creation of a first TAP access layer 3/3

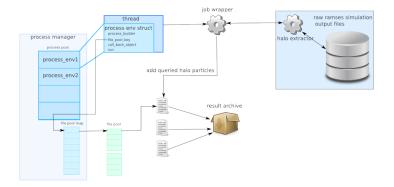
Problems

- ► The solution is not scalable
 - as many columns as the number of inputparameter or statisticalsummary associated with product/protocol
 - ▶ Can be ≫ 100 !!
 - Impossible to describe queryable columns list to user
 - Impossible to write queries against such a table with reasonable ease
- Need custom/specific TAP table definition for each particular use of SimDB
 - UI dependant, not SimDB dependant

It appears

that SimDB/DM implementation using a relationnal DB is not efficient to provide reasonably fast user-friendly access to simulation (meta)data

Output of build_tap_products_views.py


[intert instant, eq. Lbbic (profid, jusaericolau, jusaericolau, just, justripolau, mex.panericolau, mex.panericolau, just, panericolau, just, justripolau, mex.panericolau, just, justripolau, mex.panericolau, justericolau, j

inert in sinte co. Linki Gradi, Junericola, in Linkericola, Ji, Lutripola, micaericola, mac.antricola, m. macricola, Ji, macricola, Ji, Lutripola, M. Lutrip

create products tap...mtap.exp 18 halo.sol 💥

1 create table simtap.exp 18 halo (id biaserial NOT NULL, prodid biaint. 2 jz_numericvalue double precision, 3 iz numericvalue unit character varvina(32). 4 jz_stringvalue character varying(255), 5 sigmapos numericvalue double precision. 6 sigmapos numericyalue unit character varving(32). 7 sigmapos_stringvalue character varving(255), 8 itot numericvalue double precision. 9 jtot_numericvalue_unit character varying(32), 10 itot stringvalue character varving(255). 11 ix numericvalue double precision. 12 jx_numericvalue_unit character varvina(32). 13 ix stringvalue character varving(255). 14 ekin_numericvalue double precision, 15 ekin numericvalue unit character varvina(32). 16 ekin_stringvalue character varying(255), 17 epot_numericvalue double precision. 18 epot numericvalue unit character varvina(32). 19 epot stringvalue character varying(255), 20 rmax numericvalue double precision. 21 rmax_numericvalue_unit character varvina(32). 22 rmax_strinavalue character varvina(255), 23 npart numericvalue double precision. 24 npart_numericvalue_unit character varying(32), 25 npart stringvalue character varving(255). 26 idp numericyalue double precision. 27 idp_numericvalue_unit character varvina(32). 28 idp stringvalue character varving(255). 29 vx_numericvalue double precision, 30 vx numericvalue unit character varvina(32). 31 vx_stringvalue character varying(255), 32 sigmavel_numericvalue double precision. 33 sigmavel numericvalue unit character varving(32). 34 sigmavel_stringvalue character varying(255), 35 mass numericvalue double precision. 36 mass_numericvalue_unit character varying(32), 37 mass_strinavalue character varvina(255). 38 v178 numericvalue double precision. 39 v178_numericvalue_unit character varying(32), 40 v178 stringvalue character varving(255). 41 vy numericyalue double precision. 42 vy_numericvalue_unit_character_varvina(32). 43 vy stringvalue character varving(255). 44 y_numericvalue double precision, 45 v numericvalue unit character varvina(32). 46 y_stringvalue character varying(255), 47 x numericvalue double precision. 48 x_numericvalue_unit character varying(32), 49 x_stringvalue character varving(255), 50 r178 numericvalue double precision. 51 r178_numericvalue_unit character varying(32), 52 r178 stringvalue character varving(255). 53 z numericyalue double precision. 54 z_numericvalue_unit character varvina(32). 55 z stringvalue character varving(255). 56 vz numericvalue double precision. 57 vz numericvalue unit character varving(32).

Prototype of a raw data access RESTful webservice

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Introduction

SimDB DM Implementation

SimDB DAL implementation, 1st try

SimDB DAL implementation, 2nd try

SimDB implementation, next step

Proposals to solve current implementation problems How could document oriented DB solve ingestion problems ? How could document oriented DB solve query problem ? To Do

Conclusion

Proposals to solve current implementation problems

R.Wagner, Strasbourg 2009 :

- Queries for existing data are really queries against the data model, not its implementation.
- Using the data model doesnt require managing a relational database.

Our own experience :

- ► DM is efficient to describe data in an object way (nested structures → UML compositions).
- Tries to fit the object oriented DM in tabular structures :
 - makes load and query job difficult
 - require (too much) successive data transformations

It appears that

Document oriented DB (or object oriented), closer to the DM design, could be the solution

Think about document oriented DB I

Pro :

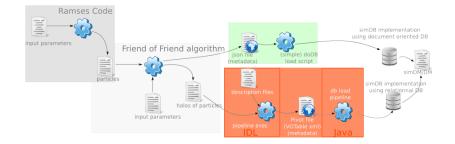
- no need for TAP or materialized views against the main SimDB/DM implementation
- Easy and consistent data organisation (make query easy)
- Solve composition problem by removing referential integrity needs
- Easily usable with many languages
- Some solutions use BSON (and so are natively JSON-capable)
 - JSON could be used through a new ingestion pipeline directly from simulation (JSON output or XML+XSLT) to JSON Document oriented SimDB/DM implementation

Think about document oriented DB II

- Easily scalable (allow MapReduce, GridFS use)
- comply with Rick Wagner recommendation in Strasbourg IVOA inter-op : to follow a nested elements way

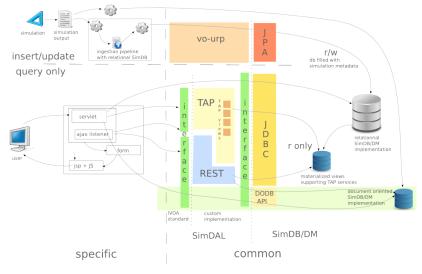
Cons :

► Not a relationnal tabular structure —> ease of a SimTAP implementation (it's noSQL, so noADQL...) ?


No validation layer in standard for JSON format

Example of dodb \longleftrightarrow tabular query mapping

From the mongodb project


INSERT INTO USERS VALUES(1,1)	db.users.insert((a:1,b:1))
SELECT a,b FROM users	db.users.find({}, {a:1,b:1})
SELECT * FROM users	db.users.find()
SELECT * FROM users WHERE age=33	db.users.find({age:33})
SELECT a,b FROM users WHERE age=33	db.users.find((age:33}, {a:1,b:1})
SELECT * FROM users WHERE age=33 ORDER BY name	<pre>db.users.find({age:33}).sort({name:1})</pre>

How could document oriented DB solve ingestion problem ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

How could document oriented DB solve query problem ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

To Do

- This solution needs a prototype implementation to evaluate :
 - Queries performance
 - Usability (in terms of ease of query writing, ability to fit IVOA requirements)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Conclusion

- DM is robust, abstract enough to deal with all the simulations we adressed
- The first DM implementation (led by vo-urp) is effective to turn DM into technical reality but not to allow realistic interactive query job.
- Implementations of the DM using a relationnal/tabular design have shown some limitations
 - Too many high cpu cost JOIN between tables (for queries but also data loading)
 - Difficulties to implement a DAL layer based on tables (cf orthogonalization tests)

Scalability

Conclusion

- Today we can take two different directions
 - Continue with the relational way, in this case we have to deal with the JOIN problem which seems to be difficult to solve since inherent to tabular design.
 - Prototype a new implementation using a design closer to the object oriented nature of the SimDB/DM (job currently being done at Meudon Observatory).