
Urbana Champaign Interop 2012

Parameter Description Language :

A generic grammar for parameters (and relates
constraints) description.

Presenting the generic client and working
services

Carlo Maria Zwölf, Franck Le Petit, Paul Harrison.

Introduction to PDL
● PDL is a grammar for

Describing parameters

Describe physical properties of parameters

Nature Meaning Unit Precision Range

Describe complex relations involving parameters

Physical
constraints

Arbitrary
Conditions

Mathematical
Conditions

Making transversal (i.e. cross standard)
interoperability straightforward within all

the VO components

Interaction of two services has sense if the parameter
sent by the first and expected by the second have same

Computer type Physical concept Unit

Interaction of two services has sense if all preconditions
of second service are satisfied by output of first one

Introduction to PDL
● PDL is a grammar for

Describing parameters

Describe physical properties of parameters

Nature Meaning Unit Precision Range

Describe complex relations involving parameters

Physical
constraints

Arbitrary
Conditions

Mathematical
Conditions

Making transversal (i.e. cross standard)
interoperability straightforward within all

the VO component

Interaction of two services has sense if the parameter
sent by the first and expected by the second have same

Computer type Physical concept Unit

Interaction of two services has sense if all preconditions
of second service are satisfied by output of first one

● Using PDL one could describe
● All the mathematical constraints on params
● All the possible conditional sentences

● PDL Descriptions
● Can be understood easily by humans
● Can be interpreted and handled by a

computer

Indeed PDL capabilities
meet:

● The “scientific”
description needs

● The “scientific”
interoperability needs

● Concepts and Details will be presented in GWS session.
● PDL standard working draft available at pdl.obspm.fr

PDL main corollary
Since parameters are finely described with fine grained granularity

– Interoperability becomes possible in the smart sense we need

– Dynamic interactive graphical client can be automatically
generated from description

– Checking algorithms for validating data can be automatically
generated from description

PDL main corollary
Since parameters are finely described with fine grained granularity

– Interoperability becomes possible in the smart sense we need

– Dynamic interactive graphical client can be automatically
generated from description

– Checking algorithms for validating data can be automatically
generated from description

Generic client
code base

+
Checking algorithms

Specific
Client

&
Validations

Configures Becomes

● Generic client can be configured on the fly using PDL description

PDL main corollary
Since parameters are finely described with fine grained granularity

– Interoperability becomes possible in the smart sense we need

– Dynamic interactive graphical client can be automatically
generated from description

– Checking algorithms for validating data can be automatically
generated from description

Generic client
code base

+
Checking algorithms

Specific
Client

&
Validations

Configures Becomes

Some Statistics on code

Lines of code
~ 10 000 total

~ 3 000 automatically generated

Classes 128

Methods 835

PDL Parser
E

xp
re

ss
io

n
 P

a
rs

e r

C
o

nd
iti

o
n

 P
a

rs
e r

G
ra

p
h i

ca
l

 P
a

rs
e r

Dynamic
GUI

Checking
layer

If all checks

are positive

Remote Service
Invocation

Plugin
U

W
S

S
O

A
P

A
d hoc

Dynamic client & Checking layer
software architectures

PDL Parser
E

xp
re

ss
io

n
 P

a
rs

e r

C
o

nd
iti

o
n

 P
a

rs
e r

G
ra

p
h i

ca
l

 P
a

rs
e r

Dynamic
GUI

Checking
layer

If all checks

are positive

Remote Service
Invocation

Plugin
U

W
S

S
O

A
P

A
d hoc

Major difficulty we have to deal with:
PDL sentences

● Could be very complex;
● Could have an arbitrary (non

predictable) number of elements.

Dynamic client & Checking layer
software architectures

PDL Parser
E

xp
re

ss
io

n
 P

a
rs

e r

C
o

nd
iti

o
n

 P
a

rs
e r

G
ra

p
h i

ca
l

 P
a

rs
e r

Dynamic
GUI

Checking
layer

If all checks

are positive

Remote Service
Invocation

Plugin
U

W
S

S
O

A
P

A
d hoc

Major difficulty we have to deal with:
PDL sentences

● Could be very complex;
● Could have an arbitrary (non

predictable) number of elements.

● All the Parsers are based on Neuron Network
algorithms

● These are implemented using factory patterns

● The parser itself build the ad-hoc network for
parsing the expression

● Every neuron performs an atomic interpretation

Dynamic client & Checking layer
software architectures

The existing services

Three existing services are exposed using the PDL framework

The existing services

Three existing services are exposed using the PDL framework

● The Meudon PDR Code

The existing services

Three existing services are exposed using the PDL framework

● The Meudon PDR Code

● The opacity table service from the Opacity Project

The existing services

Three existing services are exposed using the PDL framework

● The Meudon PDR Code online

● The opacity table service from the Opacity Project

● The Meudon Broadening Stark H computation service

The existing services

Three existing services are exposed using the PDL framework

● The Meudon PDR Code online

● The opacity table service from the Opacity Project

● The Meudon Broadening Stark H computation service

For these services

● Computations are remotely driven using Java Servlet technologies

● Results

– are “buffered” for avoiding expensive recalculations

– are sent by e-mail to user

The PDL remote service invocation plugin call the servlet with
the parameters coming from the PDL client

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

