
VO-URP:
on data modeling, UTYPEs and more

Gerard Lemson

Laurent Bourges

Aim 1: overview of VO-URP

• Request Omar

• VO-URP = Virtual Observatory UML
Representation Pipeline

• Used in SimDM to facilitate DMing effort

• Defines a syntax for UTYPE-s that is used in
UTYPE doc (Mireille)

Aim 2: discuss UTYPE-s

• Not: What are they and what are they for?

– See also Norman‘s questions
http://nxg.me.uk/note/2009/utype-questions/

• Yes: Producing UTYPE-s

• Not much: Using UTYPE-s

– Tiger team

http://nxg.me.uk/note/2009/utype-questions/
http://nxg.me.uk/note/2009/utype-questions/
http://nxg.me.uk/note/2009/utype-questions/
http://nxg.me.uk/note/2009/utype-questions/
http://nxg.me.uk/note/2009/utype-questions/

Context: data modeling in IVOA

– Some in pipe-line

– Also: VOResource family of models

• How do we make them interoperable?

– Standard answer seems to be: "UTYPE-s !!”

– Mechanism is still missing.

– Very incomplete interoperability.

Instantiation

• What does one do with models?

– Create instances

– Needs a serialisation/representation mechanism

• What we do with instances depends on
representation

– XML: write them, send them, upload them,
transform them (XSLT)

– RDB: insert them in DB, query DB

Transformation

• Potentially we want to do more with a model:
– Mapping: Create alternative representations of the

model, as faithfully as possible (Java, C#,…)
– Transformation: in queries or views, produces ad hoc

model
– Use: import in other model, either original of

transformed version

• Generally:
– Produce a view which is a partial representation of a

transformed alternative version of some ad hoc
model that used part of original model in some
representation.

Problem

How do we keep track of source and
meaning of information

• How can UTYPE-s help interoperability between
models/representations/views?
– In what contexts?

• How far can one use them; fields only, classes,
relations?

• Meaning of query results can not be represented
by simple mappings in general.

• Usefulness of UTYPEs depends very much on the
model
– E.g. in SimDM UFIs would be more useful.

Questions on UTYPE-s

Data models in IVOA

MUST/SHOULD provide

• UML

• XSD

• UTYPE-s

• Documentation

No formal constraints on any of these
representations!

IVOA models rather non-uniform.

• Some UML

– mainly as illustration, not rigorous

• Most XSD (incl. VOResource etc)

– but with different “style”

– in general not equivalent to UML

• Some RDB (ObsCore, SimDM)

• Some(most?) UTYPE-s

– Separately defined

Interoperability of data models

• Non-uniformity of modeling language makes this
a technically and conceptually non-trivial process
– Queries, implying transformations of models,

complicate matters even more.

• Idea seems to be that UTYPE-s will help
– I doubt that very much, unless for trivial use cases.

• It is not a natural solution in any case.

• Natural would be if different data models would
be expressed in common language
– Using common meta-model

An example what this could look like:

VO-URP
http://vo-urp.googlecode.com

http://vo-urp.googlecode.com/
http://vo-urp.googlecode.com/
http://vo-urp.googlecode.com/

Spin-off from Simulation Database
(SimDB)

• Use UML for complete data model
– Including documentation text

• Do NOT write other representations by hand
– Automate generation using XSLT

• From XMI 
– XSD + template XML docs

– HTML+UTYPE

– DDL+TAP_SCHEMA

– Java +JAXB/JPA

SimDB, Trieste 2008

RDB

schema

XML

schema
UTYPES

HTML

doc P
h

y
s
ic

a
l

re
p

re
s
e
n

ta
ti
o
n

Java w.

JAXB, JPA

MagicDraw CE 12.1

UML2.0 (with profile)

Generally lossy transformation (XSLT)

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDB.html

VO-URP representation:
.vo-urp

• Many different XMI dialects

• XMI complex for XSLT

• Need for simpler representation, also for use
in web app (Laurent)

• Representation of UML Profile in XML Schema

– vo-urp.xsd (intermediateModel.xsd)

• Domain Specific Language in sense of MOF

– A MOF level 2 meta-model

VO-URP Data model representations

RDB:

DDL + TAP

schema

XML

schema
UTYPES

HTML

doc P
h

y
s
ic

a
l

re
p

re
s
e
n

ta
ti
o
n

Java w.

JAXB, JPA

MagicDraw CE 12.1

UML2.0 (with profile)

MagicDraw CE 16.5

UML 2.2 (with profile)

Modelio

UML2.1.1
SimDM/Protocol

Generally lossy transformation (XSLT)

Lossless transformation (XSLT)

U
M

L
 T

o
o
ls

&
 c

u
s
to

m

Domain Specific

Language

for IVOA.

Custom transformation (XSLT)

VO-URP Representation

(XML, vo-urp.xsd)

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDB.html

.vo-urp as domain specific language

• XSD schema representing UML2 profile
• Profile

– subset of modeling elements, extension through
stereotypes/tags, predefined types

– See Appendix B SimDM REC

• Used explicitly in VO-URP browser web
application

• TBD
– Make conventions/rules explicit
– Expand types
– Add mapping configuration

http://ivoa.net/Documents/SimDM/20120503/uml/SimDM_INTERMEDIATE.xml
http://www.ivoa.net/Documents/SimDM/20120503/REC-SimulationDataModel-1.00-20120503.htm
http://www.ivoa.net/Documents/SimDM/20120503/REC-SimulationDataModel-1.00-20120503.htm

VO-URP: Reference Web Application

RDB XSD UTYPES HTML Java

VO-URP

 representation

http://galformod.mpa-garching.mpg.de/dev/SimDM-browser

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDB.html
http://ivoa.net/Documents/SimDM/20120503/uml/SimDM_INTERMEDIATE.xml
http://ivoa.net/Documents/SimDM/20120503/uml/SimDM_INTERMEDIATE.xml
http://ivoa.net/Documents/SimDM/20120503/uml/SimDM_INTERMEDIATE.xml
http://ivoa.net/Documents/SimDM/20120503/uml/SimDM_INTERMEDIATE.xml
http://ivoa.net/Documents/SimDM/20120503/uml/SimDM_INTERMEDIATE.xml
http://ivoa.net/Documents/SimDM/20120503/uml/SimDM_INTERMEDIATE.xml
http://galformod.mpa-garching.mpg.de/dev/SimDM-browser
http://galformod.mpa-garching.mpg.de/dev/SimDM-browser
http://galformod.mpa-garching.mpg.de/dev/SimDM-browser
http://galformod.mpa-garching.mpg.de/dev/SimDM-browser
http://galformod.mpa-garching.mpg.de/dev/SimDM-browser

VO-URP and UTYPE-s

• Our assumptions

– A UTYPE is a term that in the context of a data
model identifies an element of that data model
uniquely.

• To ensure uniqueness following syntax
sufficient.

– NB based on concepts in .vo-urp representation!!

VO-URP’s UTYPE BNF
utype := [model-utype | package-utype | class-utype |

 attribute-utype | collection-utype |

 reference-utype | container-utype

model-utype := <model-name>

package-utype := model-utype “:/” package-hierch

package-hierch := <package-name> [“/” <package-name>]*

class-utype := package-utype “/” <class-name>

attribute-utype := class-utype “.” attribute

attribute := [primitive-attr | struct-attr]

primitive-attr := <attribute-name>

struct-attr := <attribute-name> “.” attribute

collection-utype := class-utype “.” <collection-name>

reference-utype := class-utype “.” <reference-name>

container-utype := class-utype “.” “CONTAINER”a

identifier-utype := class-utype “.” “ID”

Use of UTYPE-s in VO-URP/SimDM

• For identification of model elements
– a HTML document (part of spec) has anchors at each

position where a definition of an element is made.
<base-url>#<utype> will bring you to that element.

– The .vo-urp representation has for each modeling
element a <utype> giving explicitly the UTYPE for that
element, plus full definition.

– Less essential: utypes can be parsed and one could
walk from the root of the .vo-urp representation down
to the element.
• Precise syntax somewhat arbitrary

Our suggestion
(possibly) independent of UTYPE discussion

• Data modeling is not easy.

Especially not in a distributed world.
– It would be useful if the DM WG were to define a common

meta-model for data modeling efforts in IVOA

– Allows compliance rules and validation

– Mappings can also be standardised

– Best practices can be enforced easily

• VO-URP has a reference implementation for this and
we’re happy to provide it as start for further
development.

