Some Thoughts on TAP and Other Ramblings

lan Evans Chandra X-ray Center Data System End-to-End Scientist

All opinions are solely those of the author

• ... how user-friendly is TAP?

=] public									
		public.flux								
		oidref								
		filter								
		<mark>flux</mark>								
		flux_prec								
		flux_err								
		flux_err_prec								
		qual								
		bibcode								
	+	public.mesXmm								
	+	public.mesHgamma								
	+	public.mesRot								
	+	public.mesGcrv								
	+	public.mesposa								
	+	public.mesMK								
	+	public.mesDistance								
	+	public.mesISO								
	+	public.mesClg								
	+	public.mesFe_h								
	+	public.author								
	+	public.mesIRAS								
	+	public.ident								
	+	public.mesCEL								
	+	public.basic								
	+	public.otypedef								

+ nublic mesIRC

- TAP presents a flat and rather unfriendly list of database table and table column names
- The scientist must spend time trying to determine which tables and columns to query
- Sometimes the names are suggestive and that may simplify the determination, but in other cases they are too closely tied to the underlying database structure to be clear
- In any case, this should be the computer's job and not the scientist's!

 Sometimes the list of tables itself can be overwhelming! (next slide)

- AtlasOutline
- DBColumns
- **DBObjects**
- **DBViewCols**
- DataConstants
- Dependency
- Diagnostics
- **FIRST**
- **•** Field
- E FieldProfile
- FileGroupMap
- 🗄 Frame
- **History**
- 🗄 IndexMap
- Inventory
- E LoadHistory
- 🗄 Mask
- HaskedObject
- E PartitionMap
- PhotoObjAll
- PhotoObjDR7
- PhotoPrimaryDR7
- PhotoProfile
- 🗄 Photoz
- PhotozRF
- PhotozRFTemplateCoeff
- PhotozTemplateCoeff

- **H** Plate2Target
- **H** PlateX
- ProfileDefs
- ProperMotions
- PubHistory
- **•** QueryResults
- **H** RC3
- **H** ROSAT
- E RecentQueries
- **E** Region
- E Region2Box
- RegionArcs
- E RegionPatch
- 🗄 Rmatrix
- 🗄 Run
- 🗄 RunShift
- **E** SDSSConstants
- E SiteConstants
- SiteDBs
- SiteDiagnostics
- E SpecDR7
- SpecObjAll
- SpecPhotoAll
- StripeDefs
- 🗄 Target
- 🗄 TargetInfo
- **H** TwoMass
- TwoMassXSC

- **USNO**
- **•** Versions
- 🗄 Zone
- **•** detectionIndex
- emissionLinesPort
- 🗄 galSpecExtra
- 🗄 galSpecIndx
- 🗄 galSpecInfo
- **±** galSpecLine
- neighbors
- sdssBestTarget2Sector
- **•** sdssImagingHalfSpaces
- **±** sdssPolygon2Field
- **±** sdssPolygons
- sdssSector
- **±** sdssSector2Tile
- 🗄 sdssTargetParam
- **±** sdssTileAll
- **sdssTiledTargetAll**
- **B** sdssTilingGeometry
- 🗄 sdssTilingInfo
- **±** sdssTilingRun
- **±** segueTargetAll
- **±** sppLines
- 🗄 sppParams
- **±** sppTargets
- stellarMassPCAWisc
- ∃ stellarMassPassivePort

OBSID
REVOLUT
MJD_START
MJD_STOP
OBS_CLASS
PN_FILTER
M1_FILTER
M2_FILTER
PN_SUBMODE
M1_SUBMODE
M2_SUBMODE
RA
DEC
POSERR
LII
BII
RADEC_ERR
SYSERR
RA_UNC
DEC_UNC
CX
CY
CZ
HTMID
EP_1_FLUX
EP_1_FLUX_ERR
EP_2_FLUX
EP 2 FLUX ERR

- Within a table the scientist is often faced with a flat list of columns without any obvious underlying structure
- Here for example, position, observation, instrument, and flux properties are all present in a single table
- This may be OK if there are only a few columns but quickly becomes unwieldy as the number increases

Name	Table	Primary Key	Datatype
flux flux_prec	public.flux public.flux	false false	real smallint
Units	UCD	Description	

instr.precision;phot.flux

flux precision

- Some metadata (units, description, UCD) about the tables and columns may be accessible (and searchable) by the scientist, but **these are not always fully and consistently populated** (see the **flux** column above)
- The **description field** could be a good heuristic to identify columns of interest if concise (e.g., the **flux precision** column above) but not if it provides an extensive description (see the example below)
- But the extended description may be essential for understanding the data content!

Name	Table	Primary Key	Datatype	Units	HUCD	Description
SUM_FLAG	twoxmm	false	integer		άĨα	The summary flag of the source is derived from EP_FLAG. It is 0 if none of the nine flags was set; it is set to 1 if at least one of the warning flags (flag 1, 2, 3, 9) was set but no possible-spurious-detection flag (flag 7, 8); it is set to 2 if at least one of the possible-spurious-detection flags (flag 7, 8) was set but not the manual flag (flag 11); it is set to 3 if the manual flag (flag 11) was set but no possible-spurious-detection flags (flag 7, 8); it is set to 4 if the manual flag (flag 11) as well as one of the possible-spurious-detection flags (flag 7, 8) is set. The meaning is thus: $0 = \text{good}$, $1 = \text{source parameters may be}$ affected, $2 = \text{possibly spurious}$, $3 = \text{located in a area where}$ spurious detection may occur, $4 = \text{located in a area where}$ spurious detection may occur and possibly spurious.

Master Sources msid

- Source Name
- Source Position
 - ICRS Equatorial Coordinates
 - Galactic Coordinates
 - Position Error Ellipse
- Source Flux Significance (S/N)
- Source Flags
- Source Extent
 - Deconvolved Source Ellipse
- Aperture Photometry
 - Source Region Aperture Fluxes
 - Photon Fluxes
 - Energy Fluxes
 - Spectral Model Energy Fluxes
 - PSF 90% ECF Aperture Fluxes
- Spectral Hardness Ratios
- Model Spectral Fits
 - Power-Law Model Spectral Fit
 - Black-Body Model Spectral Fit
 - Galactic Neutral Hydrogen Column Density
- Temporal Variability
 - Intra-Observation Variability
 - Inter-Observation Variability
- Observation Summary
 - ACIS Observations
 - HRC Observations

- For the *Chandra* Source Catalog query tool (CSCview) we provide a hierarchy of properties with human-readable titles
- The property titles are kept short so they can be easily displayed, but are also (hopefully) **intuitive**
- The hierarchies are kept to a few levels, so that the scientist can drill down the list of property titles quickly, e.g.

Master Sources → Aperture Photometry → Source Region Aperture Fluxes → Energy Fluxes

Source Observations posid

- Observation-Specific Information
- Detected Source Properties
 - Observation-Specific Source Identification
 - Source Position
 - Source Significance
 - Source Codes and Flags
 - Source Extent
 - Aperture Photometry
 - Aperture ICRS Equatorial Coordinates
 - Source Region Aperture
 - PSF 90% ECF Aperture
 - PSF Aperture Fractions
 - Source Region Aperture Fluxes
 - Total Counts
 - Net Counts
 - Net Count Rates
 - Photon Fluxes
 - Energy Fluxes
 - ACIS Broad Energy Band flux_aper_b flux_aper_lolim_b flux_aper_hilim_b
 ACIS Hard Energy Band flux_aper_h flux_aper_lolim_h flux_aper_hilim_h

- Only at the very bottom level does the scientist see the actual database column names
- We try to make the columns names reasonably **self-descriptive** so that a property title is not required for each column
- Metadata (datatype, units, description) are provided for each data column
- The descriptions provide the detail necessary to interpret the column data
- Because of the large number of data columns (~900) multiplexed over 6 energy bands, with most properties having separate lower and upper confidence limits we provide multiple views of the property hierarchy
- In this display, the hierarchy is Property → Energy Band

Source Observations

- Energy Band Independent Properties posid
 - Observation-Specific Information
 - Detected Source Properties
- Energy Band Dependent Properties
 - ACIS Broad Energy Band
 - Source Position
 - Source Significance
 - Source Extent
 - Aperture Photometry
 - PSF 90% ECF Aperture
 - PSF Aperture Fractions
 - Source Region Aperture Fluxes
 - Total Counts
 - Net Counts
 - Net Count Rates
 - Photon Fluxes
 - Energy Fluxes
 - flux_aper_b
 - flux_aper_lolim_b
 - flux_aper_hilim_b
 - Spectral Model Energy Fluxes
 - Power-Law Model Energy Fluxes
 - flux_powlaw_aper_b
 - flux_powlaw_aper_lolim_b
 - flux_powlaw_aper_hilim_b
 - Black-Body Model Energy Fluxes

 Alternatively, a scientist who is primarily interested in a single energy band (e.g., the broad band) can select Energy Band → Property as the hierarchy

On Position Queries ...

 A significant majority of the *Chandra* Source Catalog queries are **position** searches surrounding a point, where the user wants to select and retrieve properties for a possible X-ray source at a predefined location, e.g.,

POINT('ICRS', ra, dec), CIRCLE('ICRS', 40.669879, -0.013289, 0.016666667)

- However, a large fraction of TAP services do not support this kind of position query!
 - Out of 50 TAP services queried, only 8 (16%) have implemented this capability
 - Could this vitally important capability be too hard to implement?

On Domain-Specific Information ...

- TAP also needs to support domain-specific representations as determined by the data provider
 - For example, the Chandra Source Catalog uses the following energy bands:

Ultra-soft	u	0.2–0.5 keV	Soft	S	0.5–1.2 keV
Medium	m	1.2–2.0 keV	Hard	h	2.0–7.0 keV
Broad	b	0.5–7.0 keV	Wide	W	0.1–10 keV

- The existing UCD's, which define em.X-ray.soft as "Soft X-ray (0.12–2 keV)" and em.X-ray.medium as "Medium X-ray (2–12 keV)" are clearly not adequate!
- Properties such as these are certainly domain-specific and are often facilityspecific
- All properties should be representable using domain-specific units
 - For example, ObsCore requires representing the spectral limits *em_min* and *em_max* in units of meters
 - For *Chandra*, that's roughly 0.000000002 and 0.00000006
 - That may be OK for a machine to interpret but is clearly not very useful for an X-ray astronomer (not to mention the data provider) !

The Bottom Line:

• ... not very