
VOSpace v2.1

Brian Major
Canadian Astronomy Data Centre

VOSpace 2.1

•  A minor revision – any changes must be backwards
compatible with v2.0

•  A couple of noteworthy additions to v2.0 driven from the
operational requirements of the CADC implementation of
VOSpace
•  Performance
•  Access Control

•  Potential VOSpace goals for the future

VOSpace v2.1

VOSpace at the CADC

•  VOSpace is a critical component of CANFAR (Canadian
Advanced Network for Astronomical Research)

•  Has gone through the growing pains of improving reliability
and performance

•  Most of VOSpace (and the underlying data storage
systems) runs on national infrastructure (non-CADC
resources)

•  Storage and processing are co-located whenever possible

VOSpace v2.1

Data served from the CADC in 2013:

VOSpace v2.1

373
546

Bytes (TB)

Telescopes
VOSpace

5.5

16.9

Files (millions)

Telescopes
VOSpace

60% VOSpace 75% VOSpace

How is this happening?

CANFAR and VOSpace

Compute
Canada
Storage
Nodes

Compute
Canada
Storage
Nodes

Interactive
VM

Pools

Interactive
VM

Pools
VM On

Demand

VOSpace
Metadata

Batch
Processing

VOSpace

Datalink

Storage

Interactive &
Batch VM

Pools

Storage
Nodes

VOSpace v2.1

TAP

ObsCore
Metadata

CANFAR = Batch processing
Batch processing = lots of traffic

Many instances of a pre-
configured virtual machine
running in parallel.

VMs process datasets (from
telescope archives or VOSpace)
and save the results to
VOSpace.

CANFAR VO Science Example

Compute
Canada
Storage
Nodes

Compute
Canada
Storage
Nodes

Interactive
VM

Pools

Interactive
VM

Pools
VM On

Demand

VOSpace
Metadata

Batch
Processing

VOSpace

Datalink

Storage

Interactive &
Batch VM

Pools

Storage
Nodes

VOSpace v2.1

TAP

ObsCore
Metadata

CANFAR VO Science Example

Compute
Canada
Storage
Nodes

Compute
Canada
Storage
Nodes

Interactive
VM

Pools

Interactive
VM

Pools
VM On

Demand

VOSpace
Metadata

Batch
Processing

VOSpace

Datalink

Storage

Interactive &
Batch VM

Pools

Storage
Nodes

VOSpace v2.1

TAP

ObsCore
Metadata

①  User creates and configures VM

CANFAR VO Science Example

Compute
Canada
Storage
Nodes

Compute
Canada
Storage
Nodes

Interactive
VM

Pools

Interactive
VM

Pools
VM On

Demand

VOSpace
Metadata

Batch
Processing

VOSpace

Datalink

Storage

Interactive &
Batch VM

Pools

Storage
Nodes

VOSpace v2.1

TAP

ObsCore
Metadata

①  User creates and configures VM

②  User saves VM img in VOSpace

CANFAR VO Science Example

Compute
Canada
Storage
Nodes

Compute
Canada
Storage
Nodes

Interactive
VM

Pools

Interactive
VM

Pools
VM On

Demand

VOSpace
Metadata

Batch
Processing

VOSpace

Datalink

Storage

Interactive &
Batch VM

Pools

Storage
Nodes

VOSpace v2.1

TAP

ObsCore
Metadata

①  User creates and configures VM

②  User saves VM img in VOSpace

③  User launches X instances of
image in batch processing

CANFAR VO Science Example

Compute
Canada
Storage
Nodes

Compute
Canada
Storage
Nodes

Interactive
VM

Pools

Interactive
VM

Pools
VM On

Demand

VOSpace
Metadata

Batch
Processing

VOSpace

Datalink

Storage

Interactive &
Batch VM

Pools

Storage
Nodes

VOSpace v2.1

TAP

ObsCore
Metadata

①  User creates and configures VM

②  User saves VM img in VOSpace

③  User launches X instances of
image in batch processing

④  VMs use TAP to find data from
ObsCore

CANFAR VO Science Example

Compute
Canada
Storage
Nodes

Compute
Canada
Storage
Nodes

Interactive
VM

Pools

Interactive
VM

Pools
VM On

Demand

VOSpace
Metadata

Batch
Processing

VOSpace

Datalink

Storage

Interactive &
Batch VM

Pools

Storage
Nodes

VOSpace v2.1

TAP

ObsCore
Metadata

①  User creates and configures VM

②  User saves VM img in VOSpace

③  User launches X instances of
image in batch processing

④  VMs use TAP to find data from
ObsCore

⑤  VMs use Datalink to access
data

CANFAR VO Science Example

Compute
Canada
Storage
Nodes

Compute
Canada
Storage
Nodes

Interactive
VM

Pools

Interactive
VM

Pools
VM On

Demand

VOSpace
Metadata

Batch
Processing

VOSpace

Datalink

Storage

Interactive &
Batch VM

Pools

Storage
Nodes

VOSpace v2.1

TAP

ObsCore
Metadata

①  User creates and configures VM

②  User saves VM img in VOSpace

③  User launches X instances of
image in batch processing

④  VMs use TAP to find data from
ObsCore

⑤  VMs use Datalink to access
data

⑥  VMs save science results in
VOSpace

VOSpace Growth in Files (Aug 2012 – Apr 2014)

VOSpace v2.1

~160 million VOSpace files

VOSpace GETs: Files per week (Aug 2012 – Apr 2014)

VOSpace v2.1

~0.4 million files per week

VOSpace growth in TB (Aug 2012 – Apr 2014)

VOSpace v2.1

~92 TB VOSpace Data

VOSpace GETs: TB per week (Aug 2012 – Apr 2014)

VOSpace v2.1

~11 TB per week

VOSpace GETs and PUTs: Aug 2012 - April 2014

GET (TB) PUT (TB) GET (file count) PUT (file count)

Total 1 107 153 35.14 million 165.58 million

Average per
week

11 2 0.39 million 1.86 million

Peek per week 44 12 2.40 million 10.40 million

VOSpace v2.1

During this talk:
~ 123 GB of data transferred
~ 3500 files transferred

VOSpace v2.1

Geography of VOSpace PUTs

VOSpace v2.1

Geography of VOSpace GETs

Growing pains and lessons learned…

-  As VOSpace usage grew, we had to adjust to meet demand
-  Made and learned from mistakes along the way
-  The bottleneck kept shifting: fixing one vulnerability would expose

the next
Examples:
-  Tuning database transactions, locking
-  Authorization techniques
-  Contention on root nodes in DB
-  Resource pooling
-  Recognizing our system limits, “try again later” rather than fail
-  Building smart clients, identifying problem ones

VOSpace v2.1

Allowing for operational requirements…

The VOSpace specification needs to be flexible enough to allow for
performance optimizations. In general, it has been.

New optimization feature in v2.1: Reduce the number of network
connections and redirects clients need to follow to upload or
download a file.

VOSpace v2.1

Standard VOSpace transfer negotiation

1.  Client posts transfer request to VOSpace
2.  Client asks VOSpace to run transfer (/async only)
3.  VOSpace redirects to transfer details
4.  Client gets next URL to follow from the transfer details
5.  Client follows next URL
6.  VOSpace returns list of download (or upload) endpoint URLs
7.  Client starts byte transfer

Total: 5 network connections
For small files, this is a lot of overhead!

VOSpace v2.1

Optimized VOSpace transfer “negotiation”

1.  Client posts transfer request to VOSpace with details in URL as
query string parameters

2.  VOSpace returns a single URL to use for data download (or
upload)

3.  Client starts byte transfer

Total: 2 network connections
This is the best you can do without prior knowledge of the physical

location of the bytes.

VOSpace v2.1

Optimized VOSpace transfer negotiation

The consequences…

This is an optimistic approach, it assumes that, most of the time, there
are no failures.

What is compromised? Error handling, failover, and all the benefits of
using UWS for managing transfers.

Recommendation: Use the optimized/optimistic method first. If an
error is encountered, use the regular/pessimistic approach to get full
details on the error (if it persists) and inherit any additional failover
support it may provide.

VOSpace v2.1

VOSpace Robustness: Techniques for failover

Examples…

VOSpace v2.1

The power of VOSpace Views

Another great (existing) optimization: VOSpace Views
 “Move the code to the data, not the data to the code”

VOSpace views allow you to define a set of operations that usually
reduce the number of bytes that need to be transferred.

Views in use at the CADC:
 On FITS files (data nodes):
 - Cutout view, WCS view, FITS header (fhead)

 On Container nodes:
 - Manifest view, RSS view

VOSpace v2.1

VOSpace Views in the future?

Imagine dynamic views generated by the user…

A “CustomView” that users could create and provide to do work on a
data set that is run on a storage node.

-  The URI for the view could be a VOSpace URI pointing to the user’s
custom view.

-  Target file could be streamed to the stdin of view
-  stdout would be streamed to the user

Similar to CANFAR Processing, but even the short network hop is
removed

VOSpace v2.1

Reducing I/O: Network random access

Network Random Access on VOSpace Files

-  vos: A python VOSpace client API
-  FUSE binding
-  command line applications (vls, vcp, vmkdir, vrm, vchmod, vmv, vln)

Mounted FUSE VOSpace makes Random Access Calls to local cache
Cache makes HTTP Range requests to CADC storage services

(endpoints from VOSpace) to seek and read
Don’t need to download whole file before working

CANFAR vos on GitHub: https://github.com/canfar

VOSpace v2.1

Access Control in VOSpace v2.1 and beyond

Echoing Paul on the UWS 1.1 discussion page: Should we say more
about access control?

-  IVOA document on Single Sign-On is good, but needs updating
(2008).

-  Access Control makes integration, interoperability tough. Don’t
underestimate it!

-  Authentication: Maybe a good place start for VO standards
-  OpenID Connect: allows organizations to manage their own users and be

able to authenticate against other OpenID enabled services.

-  Authorization: Think that we can allow VO implementers to enforce
and govern their own access control policies.

-  Interoperable administration (users changing the policies and
permissions): May be difficult to describe in a standard.

VOSpace v2.1

Knowing the desired authentication method…

Issue: When creating endpoint (download/upload) URLs,
knowing the desired protocol isn’t enough. You need to
know the desired authentication method too.

Reason:
-  You can’t assume an authetication method for a protocol

-  HTTPS could use X.509 client certs, userid/password, or cookies

-  Endpoint URL may change with knowledge of the auth
method
-  E.g.. May have a separate, blocking URL for HTTP Basic

Authentication.

VOSpace v2.1

Authentication in VOSpace

v2.1 addition: Add the desired ‘authType’ to the transfer object
-  An optional element
-  Have a standard set, allow it to be extended:

-  Anonymous Access
-  X.509 Client certificates
-  User ID / Password
-  Session based cookie Access
-  More?

-  Placement in XML schema to be determined:
-  Multiple authTypes per protocol
-  Can be represented as tuples, or 1-n relationship

VOSpace v2.1

Summary of v2.1 Changes

-  Addition of optimized HTTP GET/POST method of transfer
negotiation for pullFromVoSpace and pushToVoSpace

-  Addition of authType to Protocol in XML Schema
-  Include a preliminary list of standard authType URIs
-  Removed view=data convenience method for data download

(already a ‘default’ view, overlaps with transfer functionality)

Still to do in v2.1:
- Add list of VOSpace implementations in the document
-  Put the document on Volute, clean up the XML so it is valid
-  Add the authType(s) to the capabilities resource

VOSpace v2.1

VOSpace in the Future

CADC VOSpace Goals:
-  Continue to improve the reliability and performance

Suggestions for IVOA VOSpace/GWS Goals:
-  Working server-to-server transfers
-  Working Interoperable clients
-  Tackle access control in v3.0, and perhaps apply it to other IVOA

standards (UWS, DAL, etc.)
-  Update Single Sign-On v1.01

VOSpace v2.1

