Large Synoptic Survey Telescope

LSST Data Access and VO

Pathfinding through TAP, ADQL and beyond

LSST VO Efforts

Current Work with VO

* TAP Service
— To support QServ and Level 1 Database

* ADQL parser
e All Python!

Future Work

e SIA

* SCS

* Ancillary VO stuff (registries, etc...)

IVOA Interop e Stellenbosch, South Africae 05/12/2016 2

Qserv overview

Qserv is LSST’s in-house distributed database

 Based on MySQL(MariaDB) + custom UDFs
* Geospatial partitioning of tables
— Tables chunks are colocated on worker nodes
* Including “Level 3” tables aka User Catalogs for join efficiency

— Uses Shared Scan to perform analytical queries
* ~1-2PBatDR1

* Qserv directly supports Asynchronous (aka batch) queries

— Likely through an extension of grammar or session variable
« CREATE QUERY AS SELECT *x FROM Objects WHERE ..;
* SET QUERY_MODE = ‘ASYNC’;
* This could be automatically handled via TAP /async
* sync queries that trigger shared scan will likely return an error
* Clearly we need to think about this carefully
* Users will be able to use TAP or directly use database connection
— Authentication via TAP handled via OpenlID.
— Authentication to Qserv handled via Kerberos or OpenID
* We are writing OpenID PAM Module, Kerberos PAM already exists
e Authorization details being worked out

IVOA Interop e Stellenbosch, South Africae 05/12/2016 3

LSST’s intended TAP Use Cases

Large Synopfic Survey Telescope

Three core use cases of TAP:

* Client -> Server

— Python, Java, C++, etc...

— Astronomy community/VO tools are main users
* Server ->Server

— Large amounts transferred (~1-5GB+ results)

— IPAC’S SUIT servers are target users

* Browser/User Agent -> Server
— Enable highly interactive web applications

— Enable Level 3 experiments and users to write better web
applications and data portals

 Easily tie in to Authentication system via OpenlD and delegation

IVOA Interop e Stellenbosch, South Africae 05/12/2016 4

TAP Implementation: dbserv

* |nitial non-TAP PoC written by Jacek Becla
— JSON response format that is easy to work with

 Moving towards TAP interfaces
— Led by me
— Working on ADQL parser
— We still like JSON though

e Qserv has native support for “async” batch-style
gueries

— Slight impedance mismatch with UWS-based
recommendations for TAP async

— Level 1 Database will need more traditional TAP approach
through UWS

— Multiple TAP Services? Not sure.

IVOA Interop e Stellenbosch, South Africae 05/12/2016

ADQL Parser: lacquer

* Prototype: https://github.com/brianv0/lacquer

— Don’t mind the mess right now ©

* lacquer is based on Facebook’s Presto parser, ported to Python
— ANTLR4+Java to PLY+Python (and LL to LALR)
— Only added syntax rule is for TOP

— Another port may be performed to C++ (Flex+Bison) for Qserv native
ADQL support
* j.e.SET sql_mode = ‘ADQL’;

— Alternatively, clients may rewrite queries instead of relying on TAP or
a SQL proxy
« curs.execute(sql(“SELECT x FROM Objects WHERE 1=CONTAINS(..)"))

 ADAQL validation and query rewriting is decoupled from parsing, multiple backends
can be supported

* Our approach is to enforce the majority of ADQL rules a validation stage rather
than in the grammar

e Parseris 50% complete, need to finish rewriter framework, then implement ADQL
validation and Qserv rewriter, and clean it all up!

IVOA Interop e Stellenbosch, South Africae 05/12/2016 6

Things we think we don’t like

Large Synopfic Survey Telescope

 Regarding VOTable responses:

XML is a machine and human readable document format. BINARY2 isn’t human
readable, so why use XML at all?

No uniform JSON
No non-CDATA Binary Format
* BINARY2 is simple but still requires custom serializers

VOTable is not a response format
* but it appears to be used as one ----> <INFO name="QUERY STATUS" value="ERROR">

We expect results to regularly exceed 1GB </I;;(l):e out of range in POS=45,91

e Personal Pet Peeves:

TOP instead of LIMIT syntax
* Especially if ADQL 2.1 supports OFFSET.

 REQUEST=doQuery ->unnecessary (and not RESTful)

e Pagination/Framing of /results/result (esp. regarding async)

Does TAP return data or files? Is TAP a VOTable interface or a database interface?
Somewhat related to VOTable issues

* And coupled to Response Format

* VOTable isn’t ideal for streaming
Again, MAXREC instead of LIMIT and OFFSET

IVOA Interop e Stellenbosch, South Africae 05/12/2016 7

Our solutions to some issues

 For VOTable issues, use “Accept” header liberally and support our three
main use cases
— Maximum Compatibility — VOTable/XML and FITS
e Consider HDF5 or SQLite?
— Ease of Use — VOTable-inspired JSON (inside Response container)
. Incremental/Stream processing in Java, C++, Python via Jackson, yajl, ijson
— Binary conciseness and cross-language compatibility
. Protobufs, CapnProto, Thrift, Avro, CBOR, MessagePack, etc...
. No clear winner, depends on use case

 For ADQL issues, we will comply with the spec as much as possible,
but also be more liberal in accepting widely adopted SQL-isms (like

LIMIT)
— TapRegExt for this?

* Similar approach to result pagination

— We get a single result, but it’s very large!

— Would like to stream it, but XML isn’t awesome for streaming

— And we’d like to implement a DBAPI/JDBC-like client interface for TAP, which might also
enable good dataframe (pandas) integration

IVOA Interop e Stellenbosch, South Africae 05/12/2016 8

JSON Output

Large Synopfic Survey Telescope

{
"result": {
"table": {
"metadata": {

"elements": [{
"$type": "field",
"name": "word",
"datatype": "text"

b oA
"$type": "field",
"name": "num",
"datatype": "integer"

oA
"$type": "field",
"name": "largenum",
"datatype": "long"

oA
"$type": "field",
"name": "time",
"datatype": "text",
"xtype": "timestamp"

A
"$type": "field",
"name": "raw",
"datatype": "binary"

H

b

"data": [
["hello", 1, "12345678901234", "2015-01-01T12:00Z", "cmF3IGRhdGE="],
["world", 1, "98765432101234", "2016-01-01T12:00Z", "bW9yZSByYXcgZGFOYQ=="],

]

}
}
}

IVOA Interop e Stellenbosch, South Africae 05/12/2016

More generally:

Client -> Server is the currently the intended use
case of the DAL standards.

Should the following use cases be considered
when designing DAL standards?

e Server -> Server
e Browser -> Server

Or are these use cases non-goals of the VO DAL?

IVOA Interop e Stellenbosch, South Africae 05/12/2016 10

Moving Forward

We will continue to implement TAP, ADQL in the near future
— And critically examine SIA, SCS

* Not sure if we've correctly identified issues or non-issues yet
with TAP.
— TAP/dbserv is very much still a prototype/pathfinder project for us

 We haven’t quite scratched the surface of SIA yet.
— We do have an “imgserv”, which is similar in function to SIAP V1

 Hard to find all the current implementations
— We need Python implementations right now

And two last questions:
e What does it mean to be a VO site?

 What is the estimated manpower (in FTEs) to implement,
from scratch, a VO site?

IVOA Interop e Stellenbosch, South Africae 05/12/2016 11

Prototypes and pathfinding:

Large Synopfic Survey Telescope

* JSON output
— https://qist.github.com/brianv0/07cfOacd83bde6f450a9

* Pathfinding Binary formats: Protobuf/CapnProto/Thrift versions of VOTable
— http://gist.github.com/brianv0/be283e3674755d76396e

* Prototype Parser:
— http://github.com/brianvO/lacquer

— Development likely moving to /Isst/lacquer soon

* Lacquer output (Derived from a VizieR query)
— http://gist.github.com/brianv0/c00e7e6a9ec89b28eabaa7432a8201a7

* Prototype TAP: dbserv
— http://github.com/Isst/dax_dbserv

IVOA Interop e Stellenbosch, South Africae 05/12/2016 12

