Galaxy evolution with the spatial distribution of Globular Clusters: how the VO has helped, and could help even more.

Raffaele D'Abrusco

Smithsonian Astrophysical Observatory

Structures in the spatial distribution of GCs

The observed 2D spatial distribution of globular clusters around their host galaxies, at a more careful look, is far from being smooth and regular, contrary to what was previously thought.

- Quantitative characterization of the structures in the GCs distribution (position, size, shape, significance)
- GC structures can be used to reconstruct the assembly history of the host galaxy

Structures in the spatial distribution of GCs

The observed 2D spatial distribution of globular clusters around their host galaxies, at a more careful look, is far from being smooth and regular, contrary to what was previously thought.

- Quantitative characterization of the structures in the GCs distribution (position, size, shape, significance)
- GC structures can be used to reconstruct the assembly history of host galaxy

Structures in the spatial distribution of GCs

The observed 2D spatial distribution of globular clusters around their host galaxies, at a more careful look, is far from being smooth and regular, contrary to what was previously thought.

- Quantitative characterization of the structures in the GCs distribution (position, size, shape, significance)
- GC structures can be used to reconstruct the assembly history of host galaxy

Structures in the spatial distribution of GCs

The observed 2D spatial distribution of globular clusters around their host galaxies, at a more careful look, is far from being smooth and regular, contrary to what was previously thought.

- Quantitative characterization of the structures in the GCs distribution (position, size, shape, significance)
- GC structures can be used to reconstruct the assembly history of host galaxy

Structures in the spatial distribution of GCs

The observed 2D spatial distribution of globular clusters around their host galaxies, at a more careful look, is far from being smooth and regular, contrary to what was previously thought.

- Quantitative characterization of the structures in the GCs distribution (position, size, shape, significance)
- GC structures can be used to reconstruct the assembly history of host galaxy

GCs spatial structures from many galaxies

Physical inferences

How the VO helped

- Registry
- TAP service
- MOCs
- The whole ecosystem of interoperable, VOenabled tools for the interactive exploration of data

There's more to it than GCs...

There's more to it than GCs...

From a distribution of points to a density map:

- A statistical method
- Normalization strategy
- Density values for contours

There's more to it than GCs...

From a distribution of points to a From a density map to a residual map
density map:

- A statistical method
- Normalization strategy
- Density values for contours
- A reference model
- Set of simulations
- spatial grid
- simulation technique
- \# of simulations
- Definition of significance
- Criteria for the identification of structures

There's more to it than GCs...

From a distribution of points to a From density map to residual map density map:

- A statistical method
- Normalization strategy
- Density values for contours
- A reference model
- Set of simulations
- spatial grid
- simulation technique
- \# of simulations
- Definition of significance
- Criteria for the identification of structures

How the VO could help

The real value of my work is in the "statistically-produced data products" (like the density map and residual maps). This type of data (produced by astronomers and/or data centers alike) will become more and more important for our discipline.

- Do these data fit naturally in any data model?
- Should a minimal set of metadata for these data be formalized?
- Can these data be discovered and searched?
- Can the VO help me to get these data re-used or cited?

