
Fig. 1

Fig. 2

Fig. 3

1. Time Series, VO-DML, DaCHS

(cf. Fig. 1)

Markus Demleitner
msdemlei@ari.uni-heidelberg.de

(cf. Fig. 2)

• DaCHS Annotation. . .

• . . . for time series. . .

• . . . and how it ends up in VOTable.

(cf. Fig. 3)

1

2. DaCHS Annotation I

DaCHS is a general VO publishing framework.

Each resource is described using a resource descriptor (RD) containing, among lots of other stuff,
table metadata, e.g.,

<table id="instance">

<column name="hjd" type="double precision"

unit="d" ucd="time.epoch"

tablehead="Time"

description="Time this photometry corresponds to.">

<column name="df" type="double precision"

unit="adu" ucd="phot.flux"

tablehead="Diff. Flux"

description="Difference flux as defined by 2008MNRAS.386L..77B"/>

<column name="e_df"

unit="adu" ucd="stat.error;phot.flux"

tablehead="Err. DF"

description="Error in difference flux."/>

</table>

From this, a human can work out that it’s a time series with one value and its error. A machine
could perhaps based on UCDs, but we want a less ambiguous and more explicit annotation.

3. Prior Art

Before VO-DML, DaCHS understood one DM: STC. Annotation used a slight variant of STC-S:
<table id="sample">

<stc>

Time UTC BARYCENTER "t_0"

Position ICRS Epoch J2000.0 "raj2000" "dej2000"

</stc>

<column name="raj2000" type="double precision" ...

<column name="dej2000" type="double precision" ...

<column name="t_0" type="double precision"

</table>

The compact, text-based annotation with informal name-using referencing worked reasonably
well.

Plan: Move that into the VO-DML age.

2

4. DaCHS Annotation II
<dm>

(ivoa:Measurement) {

value: @df

statError: @e_df} </dm>

<dm>

(stc2:Coords) {

time: (stc2:Coord) {

frame:

(stc2:TimeFrame) {

timescale: UTC

refPosition: BARYCENTER

kind: JD }

loc: @hjd }

space: [...]}</dm>

<dm>

(ndcube:Cube) {

independent_axes: [@hjd]

dependent_axes: [@df @mag]}</dm>

Independent, task-specific annotations.

Ad-hoc annotation language specific to DaCHS rather than XML on input (though DaCHS RDs
are XML otherwise; DM annotation just explodes if you do that, and that’s bad for something
routinely written and reviewed by humans).

Literals, sequences, and @references.

This particular annotation not backed up by VO-DML. Once that’s there, validation is possible.

The full annotation can be obtained as part of the embedding RD1.

5. Simplified VOTable Mapping

This is an excerpt of the resulting VOTable2’s annotation.
<INSTANCE dmtype="ivoa:Measurement">

<ATTRIBUTE dmrole="statError">

<COLUMN ref="e_df"/></ATTRIBUTE>

<ATTRIBUTE dmrole="value">

<COLUMN ref="df"/></ATTRIBUTE>

</INSTANCE>

<INSTANCE dmtype="stc2:Coords">

<ATTRIBUTE dmrole="space">

<INSTANCE dmtype="stc2:Coord">

<ATTRIBUTE dmrole="loc">

<INSTANCE dmtype="stc2:SphericalPoint">

<ATTRIBUTE dmrole="latitude">

<CONSTANT ref="ndstsswpdpsa"/></ATTRIBUTE>

...

<ATTRIBUTE dmrole="frame">

<INSTANCE dmtype="stc2:SpaceFrame">

<ATTRIBUTE dmrole="epoch">

<LITERAL dmtype="ivoa:string">J2000.0</LITERAL></ATTRIBUTE>

<ATTRIBUTE dmrole="orientation">

<LITERAL dmtype="ivoa:string">ICRS</LITERAL></ATTRIBUTE>

Modifications vs. plans as gleaned from Mark’s draft serialisations:

1 http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs/k2c9vst/q.rd
2 http://dc.zah.uni-heidelberg.de/getproduct/k2c9vst/data/OGLE-2016-BLG-0126 VST r SDSS68.t

3

• No GLOBALs (actually, could do without an explicit TEMPLATE element, too).

• Attributes are always ATTRIBUTE independent of model details (no COMPOSITION or
so)

• actually, I’d much prefer if there’d just be a single kind of reference rather than COLUMN,
CONSTANT and whatnot – a client will see what it is right after referencing, and I don’t
see a major benefit in knowing that before dereferencing.

• I’m using LITERAL with dmtype, but only with reservations. I’d much rather see PARAM
here.

Modifications vs. DM patterns:

• Lots of minor ones I don’t much care about (e.g., if you insist stripping the J off of J2000.0,
I’m ok with it; don’t care too much whether the attributes in the spherical point are longitude
and latitude or something else).

• STC frame is a dataType-valued attribute of the coordinate (no referencing). Re-use of
these beasts doesn’t buy that much, and there’s no point modelling them as objects.

• Just one coordinate type with weakly-typed attributes location (could be 1D, 2D, 3D,
though that’s probably only an issue for spatial) and frame (could be SpaceFrame, Time-
Frame, or perhaps other frames); so, you don’t have to define and maintain separate types
for the various “axes”.

• STC structures are referencing actual coordinates (VOTable FIELDs or PARAMs) rather
than measurements (with errors and all); to understand the STC structure, it’s not important
if a coordinate is a measurement or has a different provenance.

6. Proposed NDCube Processing

1. client parses STC annotations by looking for stc2:Coords-typed annotation.

2. client looks for ndcube:Cube-typed annotation. Here, there’s just one independent axis,
hjd, so we have a 1-D dataset.

3. client inspects existing STC annotation of hjd. It’s a temporal coordinate, hence we have
a time series.

4. client pulls the set of dependent axes from ndcube:Cube annotation. Perhaps let the user
choose which one to plot?

5. plotting component looks for ivoa:Measurement-typed annotation of df to work out what
to use as error in the plot.

7. Conclusion

Annotation isn’t rocket science. but there’s lots of little engineering problems. Let’s try and
work them out.

4

