
Cavern: a different VOSpace prototype

Patrick Dowler
Canadian Astronomy Data Centre

prototype: Patrick Dowler, Brian Major, Adrian Damian

Cavern: a different VOSpace prototype

● current CANFAR VOSpace is operational:
− ~100 users, ~250TiB, ~175 million files

● 3-part implementation:
− web service front end (REST API)
− RDBMS for node metadata
− distributed object store for data node bytes (CADC data archive)
− highly integrated with CADC/CANFAR authentication and

authorization - users control permissions
● command-line clients for users

− familiar unix style (vls, vcp, vrm, …)
● mountable via FUSE (vofs)

− uses REST API, negotiated transfers, etc
− complex implementation (FS + multi-threaded + caching)
− it works...
− performance not sufficient: primarily due to overhead

Cavern: a different VOSpace prototype

● new VOSpace prototype
● 2-part implementation:

− web service front end (REST API)
− scalable filesystem backend
− complete integration with A&A system - users control

permissions
− allow clients to mount using off-the-shelf tools

● consistency between REST API and mounted access
● scalable to support processing work loads

● easy bits:
− use java.nio package to map VOSURI <-> Path (on disk)
− DataNode <-> file
− ContainerNode <-> directory
− LinkNode <-> symbolic link (VOSpace internal copy: hard link)
− owner of the node <-> owner of the file/directory/link

● tricky bits:
− file owner
− store node properties in the filesystem
− VOSpace permission properties don’t match basic POSIX

permission model
− link node behaviour

● always keep in mind: what happens when a user moves a large
directory from one place to another?

Cavern: a different VOSpace prototype

Cavern: a different VOSpace prototype

ceph block storage

filesystem

cavern
(docker

jvm
tomcat)

sshd
(docker)

sssd
(docker)

LDAP
(389server)

ac
(jvm

tomcat)

currently a single server

Cavern: a different VOSpace prototype -- Owner

● owner of a node: a known CADC/CANFAR user
● owner of a file: POSIX user known to the system
● the CANFAR access control (ac) service built on LDAP backend

− translation to POSIX user
− java.nio.file.attribute.UserPrincipalLookupService

● nodes created through VOSpace API must be assigned ownership:
java.nio.file.attribute.PosixFileAttributeView

● requires web service with chown
− run tomcat process as root (ack!)
− use setcap to give tomcat cap_chown (ummm… scope?)
− exec a small external program with cap_chown (whack-a-mole)
− tomcat in container: run as root (ummm… OK?)

− definitely introduces security concerns….
● worked: ext4, xfs, zfs failed: NFSv3, NFSv4

Cavern: a different VOSpace prototype -- Node Properties

● users can store arbitrary key=value pairs on any kind of node
− in practice, keys are URIs (length to ~32 chars)
− in practice, values are very short
− expect values of ivo://ivoa.net/vospace/core#title to be long-ish

● some node properties in use are not set by users and provided as
basic POSIX attributes: length, modification timestamps, etc

● Solution: POSIX extended attributes to store others
java.nio.file.attribute.UserDefinedFileAttributeView

● worked: ext4, xfs, zfs failed: NFSv3, NFSv4

Cavern: a different VOSpace prototype -- Permissions

● VOSpace permission properties don’t match basic POSIX
permission model
− ivo://ivoa.net/vospace/core#ispublic == POSIX world-readable

● basic POSIX group permissions could support one of these
− ivo://ivoa.net/vospace/core#groupread
− ivo://ivoa.net/vospace/core#groupwrite
− BUT collaboration use cases require both w/ different groups

● solution: POSIX extended access control lists (ACLs)
java.nio.file.attribute.AclFileAttributeView
− not implemented in Linux JVM for any file system
− wrote code to exec getfacl/setfacl (simple and robust)

● worked: ext4, xfs, zfs failed: NFSv3, NFSv4
● pro: enforces permissions when filesystem accessed by user
● con: users cannot necessarily see the permissions that grant access

Cavern: a different VOSpace prototype -- Link Nodes

● in VOSpace API, LinkNode target is a URI
● in filesystem, symbolic link target is a path

− restrict target to another local node
− absolute URI of LinkNode target made relative with respect to

the root of the vospace
− relative links work via mount if the mount point is close enough

to root to include the target
− broken links are harmless but users have to grok how mounting

and relative links interact (~sysadmin concern)
● ironically, users of the production VOSpace want relative links

− magic absolute <-> relative not a great solution
− maybe concept of relative links should be added to standard?

● worked: everywhere
● somewhat complex & magical

● initial prototype: SSHFS
● client uses transfer negotiation to get the mount details

new Direction: ivo://cadc.nrc.ca/vospace#biDirectional
new Protocol: ivo://cadc.nrc.ca/vospace#SSHFS

● resulting endpoint:
sshfs:pdowler@proto.canfar.net:/blah/blah/pdowler/foo
− sshfs scheme (because xsd)
− posix user name
− ssh server + impl-specific path (/blah/blah)
− node path to the container being mounted

● works? parts tested, deployment underway
● pros: permissions enforced servers-side
● cons: users cannot see or manipulate ACLs or extended attrs

10

Cavern: a different VOSpace prototype -- Mount

mailto:pdowler@proto.canfar.net

Cavern: a different VOSpace prototype -- Mount

● future work:
− performance testing of sshfs

− put a file server between disks (ceph) and user-facing services
(lustre, glusterfs, ???) so we can scale

− look at alternative user-space network filesystem mount:
client+server or direct to low level file server (glusterfs?)

https://github.com/opencadc/vos.git

Cavern: future deployment goal

filesystem

cavern
(docker

jvm
tomcat)

sshd
(docker)

sssd
(docker)

LDAP
(389server)

ac
(jvm

tomcat)

ceph block storage

sssd
(docker)

file server

