

Building up a Time Series Data Model

M.Louys, F. Bonnarel, L. Michel, A. Nebot, M. Cresitello Dittmar, B.Cecconni, T. Boch, S.Derrière, Gilles Landais

Which Time Domain Data to cover?

- Time series is considered in a large sense as a collection of data samples, taken along a sequence of time stamps.
- F=f(t), with F being
 - a simple value for a measure,
 - One structured measure with value, error, precision, etc.
 - Multiple values (e.g. multi-wavelength)
 - A dataset itself, e.g. the data product resulting of an observation: spectrum, image, cube, etc .
- F is a dataset, observed in one go or compiled from various observations

Minimal metadata needed

- F has a set of measures along some observed physical axes
 - Position, spectral band, polarimetry,
 - Observables varying with time : velocity, flux, mag, etc .
 - Rich description of Time axis properties
- Search for Time domain data:
 - When are the time stamps taken and how ?
 - Which observable quantities (measures) are available for a timeseries dataset?
 - Which axes together with their coordinate system?

Various combinations use cases

Ultracam time series

Various combinations use cases

Multiband Flux measures

Coord/ Measure	T1	T2	Т3	Т4	T5	Т6	T7	Т8	Time range	Min time period	T-xel
magB	+		+	+							3
Err_magB	+		+	+							3
magV		*		*		*		*	Т8-Т2	Min (tj+1-tj)	4
Err_magV		*		*		*		*			4
magU				^	٨	^	٨	^	T7 –T4		5
Err_magU				^	٨	^	٨	^			5

IVOA meeting, Victoria May 2018, Time Domain & DM, Mireille Louys

Measures + datasets

Data Model Reuse from the IVOA

• A Time series is

- a dataset \rightarrow reuse ObsDataset from **DatasetMetadata DM**
- A multi axis dataset \rightarrow reuse SparseCube Cube DM
- A collection of points of multiple dimensions Cube NDPoint
- The principal Cube *DataAxis* is **TimeAxis**
- Its properties can be summarized with Characterization DM
- Measures/Observations depend on time samples
- Simple measurement \rightarrow reuse CoordMeasure as in STCv2.0 DM
- Structured measures as data products → ObsDataset element from DatasetMetadata DM
- Bundle of measurements on a similar physical axis \rightarrow To be modelled

Data selection : Simple measure

Data selection : associated dataproducts

How to handle multiple measures

- Simple light curve 1 Time Axis , 1 Flux axis
- Multiwavelength light curve
 - Multiple DataAxis as Flux axis =f(λ)
- Heterogeneous TS
 - Lightcurve with associated images (or spectra?)
- TS of datasets
 - Cube TS, e.g. MUSE series of hyperspectral cubes

How to bind with STC / meas and coos

- We identify the basic physical measures in TS DM
- How to describe them in STC Measures , CoordMeasure, etc .
- How to bind to the Coordinate Frames
- Describe all kinds of Observables
 - Generic physical measure with UCD Tag

Multiplicity case : multiband / heterogeneous details level

t1	t2	t3	t4	t5	t6
magBerrorMagB	 magB errormagB magU errormagU 	 magV errormagV magU errormagU 	magBerrorMagB	 magB errormagB magU errormagU 	 magV errormagV magU errormagU

IVOA meeting, Victoria May 2018, Time Domain & DM, Mireille Louys

Modeling Status

- Coded in the Modelio UML modeler 3.6
- VODML Import of Cube DM and STC DM
- To do
 - Re-use CharDM and EPN-Core DM for completing the TimeAxis description
 - Resolve how to represent multiplicity of observables at a time stamp
 - Generation of the VO-DML xml description for this model
 - Generation of the html documentation via VO-DML tools
- Explore more science cases

IVOA meeting , Victoria May 2018, Time Domain & DM, Mireille Louys

Lessons learned

- There are a lot of concepts already existing
- The re-use of classes from different models is more tricky than expected
 - Model complexity : many levels of abstraction in STC
 - Modeling tool
- Importing the models in Modelio is not straightforward
 - Import of xmi works
 - Cannot see the classes in Modelio
- More to experience at VODML Hackaton