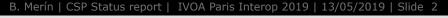
CSP Status Report

Bruno Merín

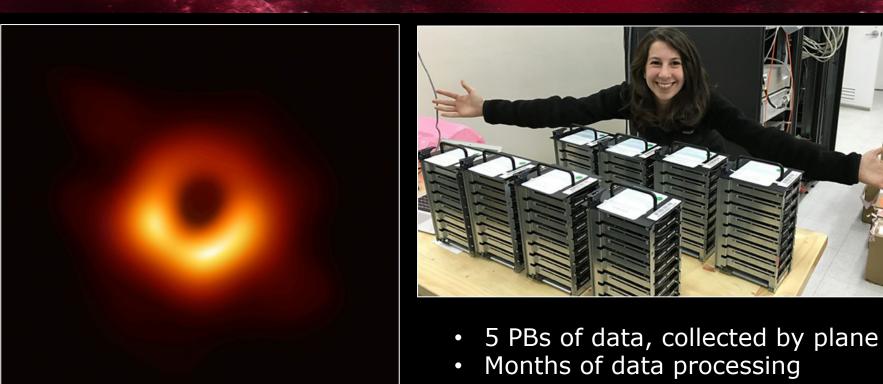
IVOA Committee on Science Priorities (CSP)
http://wiki.ivoa.net/twiki/bin/view/IVOA/IvoaSciencePriorities


ESAC Science Data Centre (ESA), Madrid, Spain

IVOA Paris Interop, 13/05/2019

Outline

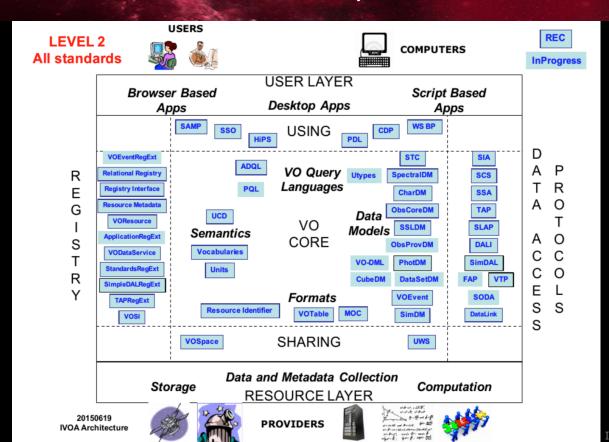
- 1. Motivation
- 2. Scientific priorities
 - Currently identified
 - 2. Upcoming
- 3. Final recommendations



Motivation: to enable more science!

So what do scientists need?

- 1. Visualization tools
- 2. Simple / easy access to reliable, relevant and big data
- 3. Fast computation on new data
- 4. Easy comparison tools between data and models/theory
- 5. Data completeness and consistency
- 6. Reproducible data representation



What does the IVOA provide?

Technology

P. Dowler TCG Report

1+1

IVOA Paris Interop 2019 | 13/05/2019 | Slide 5

What does the IVOA provide?

- 1. Visualization tools -> SAMP, HiPS, (T-)MOC
- 2. Simple / easy access to data
- -> registry, ObsCore, SAMP, TAP, SODA, SIA/SSA, HiPS, (T-)MOC
- 3. reliable data
- -> DataModels, Semantics
- 4. relevant data
- -> ??? (missing, links to papers?, data ratings?)

What does the IVOA provide?

- 5. Fast computation on new data
- -> GWS, Computing resources close to the data, VOSpace interface for distributed storage -> Focus Session on Big Data
- 6. Easy comparison tools between data and models/theory
- -> SimDAL, but models usually created by users...
- 7. Data *completeness* and *consistency*
- -> Registry complete and consistent? Glots?
- 8. Reproducible data representation
- -> Scripting interfaces, python? ADQL, TOPCAT -> Astropy Hackathon

General recommendation

The best way to make progress is via a constant dialogue:

science \impute technology

Current scientific priorities at IVOA

- Time-domain astronomy: light-curves -> see new proposed TIMESYS and T-MOC
- Multi-dimensional data: spectral or time cubes (sky + wavelength/frequency or sky + time)
 - Python reference implementations prioritized for major services?
 - Ways for accessing large amounts of data from future surveys?
 - Other growing areas/priorities?

Example case for the Multi-Dimensional use-case

User requirements defined in 2013:

- Data Discovery (Query) as a function of
 - RA, Dec
 - Frequency/wavelnegth
 - Polarization states
 - Spatial scale
 - Angular resolution
 - Integration time
 - Time of observations
- Data Access
 - Download complete science data
 - Download simple cutouts

Simple cut-outs

Spatial: a circle (a coordinate + radius)

Energy: one interval (energy1 - energy2)

Time: one interval (time1 - time2)

Polarization: a list

Additional requirements for cut-outs:

Sum along any one or more axes

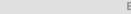
Re-bin in one or more axes

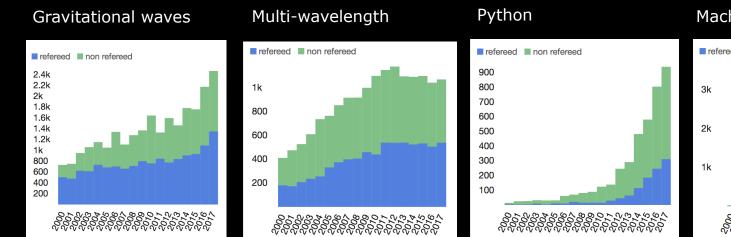
Multiply by a function

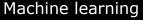
Other action on the data

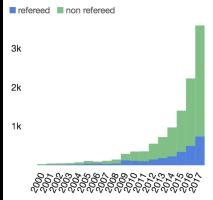
Example case for the Multi-Dimensional use-case

- October 2012: "Time-Domain Astronomy and Multi-Dimensional data were AGREED as priority areas for the IVOA" FM46S
- May 2013: Focus session on multi-dimensional data in Heidelberg
- May 2014: Focus session on multi-dimensional data at ESAC/ Madrid
- June 2015: DataLink 1.0 IVOA Recommendation
- December 2015: SIA 2.0 IVOA Recommendation 23 Dec. 2015
- May 2016: Focus Session on "Interoperability of data from major astronomical projects"
- May 2017:
 - SODA 1.0 IVOA Recommendation 17 May 2017
 - Obscore 1.1 IVOA Recommendation 9 May 2017
 - Announced the milestone IVOA multi-d standards: first set of standards to address Discovery, Access and Simple cut-out of multi-D data
- July 2018: IVOA note on Feedback on the DAL protocols relevant to Multi-D standards
- Feb. 2019: Reference implementation on ASTERICS DADI Technology Forum









Upcoming scientific priorities at IVOA

ADS-listed articles containing those key-words as a function of time

IVOA - Astropy hackathon

• Several core developers of the Astropy and Astroquery groups will attend part of the IVOA interop and will run a two-days hackathon/sprint with a few Astropy contributors from IVOA in a parallel session (Tue and Wed).

Goals:

- Explore how best to build cooperation between the IVOA and Astropy
- Discuss role of PyVO
- Deliver new VO features!

Focus session on Big Data Challenges in Astronomy

Motivation for the Focus Session

LSST data exploitation plans

Time

2

5+5

5+5

European Space Agency

Presentation

B. Merín | CSP Status report | IVOA Paris Interop 2019 | 13/05/2019 | Slide 14

Tuesday, May 14, 16:00--17:30, Salle Le Verrier

Speaker

Bruno Merín

Tom Donaldson

Gregory Dubois-Felsmann

Title

Juan González	Gaia data exploitation plans	5+5
Jesús Salgado	Euclid data exploitation plans	5+5
Séverin Gaudet	SKA RC data exploitation plans	5+5
	Open discussion on challenges and opportunities	28

Pan-STARRS, WFIRST and TESS data exploitation plans

Focus session on Big Data Challenges in Astronomy CS2

Questions for large surveys:

- Describe the data volumes and types of data expected from the mission/survey.
- Describe your data dissemination/exploitation plan for users.
- Are you looking at sending data to users or looking at a code to the data approaches?
- How would you cross-correlate data with different surveys?
- How and where does the IVOA fit into your plans?

The IVOA needs you

We need active and enthusiastic scientists at the Committee of Science Priorities!!

Talk to us if you are interested!!

Final recommendations from the CSP

- Always ask the question: how is the user going to use this?
- Always follow the user workflow to the paper and keep the big picture (is provenance clear? Can I explain/make a plot of this?)
- Connect to the future generation of users where they are: e.g.
 python, github, open source projects, social media, online open fora,
 connected to new big astronomy projects, using mobile devices and
 expecting quick answers

Thanks!

Committee on Science Priorities: csp@ivoa.net

