MONTAGE AND HIPS

G. Bruce Berriman
John Good
Vandana Desai
Steve Groom (Caltech/IPAC)

What Is Montage?

- Open source image mosaic engine (BSD 3-clause).
- Written in ANSI-C for performance and portability.

What Does Montage Bring to HiPS?

- Rectifies backgrounds by modeling differences between images.
- Adaptive stretch for visualization.
 - See Berriman and Good 2017 *PASP* **129** 058006 (https://doi.org/10.1088/1538-3873/aa5456)
- Supports HPX (Version 5; Dec 2016)₃

The Goal

- WISE performed an all-sky imagesurvey at 3.4 μm, 4.6 μm, 12 μm, and 22 μm 18,240 images 4095x4095 pixel @1.375"/pix.
- Build HiPS maps of WISE down to level
 9 tiles, level 18 pixels (1 arcsecond).

Creating a HiPS Map of WISE Data

- Computing HPX mosaics of WISE data.
 - Background rectification.
- Creating HiPS tiles from the HPX mosaics.
 - Image data → display values.
 - Adaptive stretch.
- Optimize use of hardware resources.

Creating WISE Mosaics

- This is the hard part:
 - Compute intensive.
 - Backgrounds icky at the longer wavelengths.
- Use existing Montage tools delivered in Version 5.
- Use mProjectQL (image interpolation) for reprojection.
- Create set of overlapping image plates.
 - 32 x 32 plates with 128 pixel overlap.
 - Plates 10.6° on a side.

Creating WISE mosaics

- Create HPX plate headers.
- Find files in each region.
- Reprojection.
- Background rectification.
- Co-add files to create plate.
- Do global background corrections.

Cutting out HiPS Tiles

- Prescription:
 - Create HiPS tile header.
 - Co-add images.
 - Shrink and repeat
 - Generate PNGs

Processing Times

Times for one of the 32 x 32 plates

Retrieving WISE images	(mArchiveExec)	7m 14s
Reprojecting WISE images	(mProjExec)	
Generating and fitting image overlap differences	(mDiffFitExec)	14m 32s
Background-correcting reprojected images	(mBgExec)	7m 14s
Coadding for plate mosaic	(mAdd)	10m 30s
Shrinking for quicklook	(mShrink)	1m 17s

Total = 141m 54s

- Three nodes on a cluster of 3 GHz, 20 core machines
- 40 days to complete
- Optimize processing ... good candidate for cloud processing.

Formal Release Summer 2019

- Formally test new HiPS modules.
- Create Python binary extensions of new modules and test them.
- Optimize processing.

.... Contact Bruce if you want to do a shared-risk test drive

gbb@ipac.caltech.edu

Montage and Social Media

- Web http://montage.ipac.caltech.edu
- Git Hub https://github.com/Caltech-IPAC/Montage
- Facebook:
 https://www.facebook.com/montagemosaicsoftware/
- YouTube:
 https://www.youtube.com/channel/UCFjmHCDrq4YIUly
 1r082TjA