
Recent and Future
Developments in MOCpy
Matthieu Baumann (CDS), Thomas Boch1

1Centre de Données astronomiques de Strasbourg

14 May 2019

Summary

New developments tools

New Features

Future of MOCPy

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 1

General presentation

• MOCPy is a Python library allowing easy creation, parsing and
manipulation of MOCs (Multi-Order Coverage maps)

• On GitHub
• Multi-platforms and works for Python 2 and 3
• Has a few dependencies:

1. astropy_healpix (BSD-3 clause HEALPix library)
2. numpy
3. matplotlib
4. spherical-geometry

• BSD-3 licensed
• Available through pip

pip install --upgrade mocpy

• Latest version: v0.5.6

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 2

https://github.com/cds-astro/mocpy
https://astropy-healpix.readthedocs.io/en/latest/
https://www.numpy.org/
https://matplotlib.org/
https://github.com/spacetelescope/spherical_geometry
https://pypi.org/project/MOCPy/

New developments tools

New developments tools

Documentation

Testing

Continuous Integration

New Features

Future of MOCPy

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 3

Documentation
• reStructuredText files compiled to html static files using
Sphinx.

Figure 1: https://mocpy.readthedocs.io

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 4

http://www.sphinx-doc.org/en/master/
https://mocpy.readthedocs.io/en/latest/

Documentation. . .

• Sphinx extensions are convenient
1. autodoc: Sphinx looks for API commentaries in the .py files,

compiles them to html and binds the API doc to the html files
coming from the .rst files

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 5

Documentation. . .

2. doctest: Example code snippets can be written in the API
doc commentaries and can be run with

make doctest

3. matplotlib.sphinxext: matplotlib has a Sphinx extension for
executing portions of code and showing the resulting plots
next to the source code in the html generated files!

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 6

Testing

• Unit tests added making mocpy more robust to API and core
changes

• pytest:
1. Tests files are put in a mocpy/tests directory
2. In the root run the tests with

python -m pytest mocpy
3. Unit tests are methods beginning with the name test_*

def test_union(moc1, moc2):
assert moc1.union(moc2) == MOC.from_json({

'0': [0, 1, 2, 3, 4, 5, 7]
})

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 7

Testing. . .

4. Several extensions:
4.1 For benchmarking pytest_benchmark
4.2 For running code coverage statistics pytest-cov (91% code

coverage in mocpy)
4.3 For profiling purposes pytest-profiling

Figure 2: Result profiling SVG graph example

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 8

Continuous Integration

• At each new commit pushed, Travis-CI runs automatically a
script:
1. That clones the repo
2. Makes a conda environnement that contains all the deps

(e.g. for running the tests. . .) and activates it
3. Runs the tests with pytest and prints the coverage stats
4. Runs the notebook examples
5. Builds the docs with Sphinx
6. Runs the code examples in the doc API
7. If the previous steps passed and the commit is tagged then

a new version of MOCPy is deployed on the pip servers

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 9

https://travis-ci.org/cds-astro/mocpy/branches

New Features

New developments tools

New Features

Plot MOC enhancement

String (de)serialization

Creating a MOC from a polygon

Future of MOCPy

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 10

Plotting MOC enhancement

• Two methods:
1. MOC.fill draws the HEALPix cells of a MOC one by one
2. MOC.border draws only the external border(s) of a MOC

• They accept a matplotlib.axes.Axes, an
astropy.wcs.WCS and several matplotlib styling kwargs
(linewidth, color, fill, . . .)

• MOC.WCS is a new class that essentially wraps an
astropy.wcs.WCS. It creates a WCS from:
1. A center astropy.coordinates.SkyCoord
2. A fov astropy.coordinates.Quantity
3. A coordsys (‘icrs’ or ‘gal’)
4. A rotation astropy.coordinates.Angle
5. A projection type (all astropy supported projections)

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 11

http://docs.astropy.org/en/stable/wcs/#supported-projections

Plot examples
from mocpy import MOC, WCS
from astropy.coordinates import Angle, SkyCoord
import astropy.units as u
Plot the MOC using matplotlib
import matplotlib.pyplot as plt
fig = plt.figure(111, figsize=(10, 10))
Define a astropy WCS easily
with WCS(fig,
fov=150 * u.deg,
center=SkyCoord(0, 0, unit='deg', frame='icrs'),
coordsys="icrs",
rotation=Angle(0, u.degree),
projection="AIT") as wcs:

ax = fig.add_subplot(1, 1, 1,
projection=wcs)

galex.fill(ax=ax, wcs=wcs,
alpha=0.5, fill=True,
color="red", linewidth=0,
label="GALEX")

sdss.fill(ax=ax, wcs=wcs,
alpha=0.5, fill=True,
color="green", linewidth=0,
label="SDSS9")

...
plt.show()

Figure 3: Rendered with MOCpy

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 12

String (de)serialization
Deserialization
1. MOC.from_str takes a string following this EBNF grammar

moc ::= ordpix (sep+ ordpix)*
ordpix ::= int '/' sep* pixs
pixs ::= pix (sep+ pix)*
pix ::= int? | (int '-' int)
sep ::= [,\n\r]
int ::= [0-9]+
2. Use of lark-parser, a python library generating a parser from a

grammar. The parser is generated the first time
MOC.from_str is called

3. Submitting a string either:
• raises an exception if the string does not match the grammar
• or returns an AST that is then converted to a json format

{'depth': int[]}
4. The json is passed to MOC.from_json and the resulting MOC

is returnedIVOA Interop May 2019 - Recent and Future Developments in MOCpy 13

http://ivoa.net/documents/MOC/20190404/PR-MOC-1.1-20190404.pdf#page=14
https://github.com/lark-parser/lark

String (de)serialization

• Examples

MOC.from_str(
'3/283 \
4/1129,1146,1220-1221,1223 \
5/4489-4491,4494,4499,4505, \
4507-4508,4510,4512-4513, \
4525,4527,4588,4869,4871, \
4888-4889,4891,4930,4936'

)

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 14

String (de)serialization

Serialization
• Serialization: to string

moc_str = moc.serialize(format='str')

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 15

http://ivoa.net/documents/MOC/20190404/PR-MOC-1.1-20190404.pdf#page=14

New MOC from a polygon
• MOC.from_polygon takes lon, lat

astropy.coordinates.Quantity and a depth defining the
maximum depth of the MOC

• Relies on spherical-geometry, a C-python library handling
polygon intersections on the unit sphere.

• (lon, lat) must not define a self-intersecting polygon.

3. Algorithm:
3.1 Begin with the 12 base cells in a queue
3.2 We take one cell from the queue and remove it
3.3 If the cell is not intersecting the polygon

3.3.1 If it is outside, it is discarded
3.3.2 If it is inside, it is added to the MOC

3.4 If the cell intersects the polygon
3.4.1 If the cell is at the max depth then it is added to the MOC
3.4.2 If not, then it is divided in its 4 children. They are added to

the queue and wait to be tested
3.5 Loop over 3.2 to 3.4 until there is no more cells in the queue

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 16

https://github.com/spacetelescope/spherical_geometry

Examples of from_polygon

Figure 4: MOC from an HST
window defined at the depth 21

Figure 5: A MOC from a concave
polygon on the unit sphere

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 17

Future of MOCPy

New developments tools

New Features

Future of MOCPy

Future developments

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 18

Future developments

• Replace astropy_healpix dependency with cdshealpix
• cdshealpix: pip install cdshealpix

1. New python wrapper developped by the CDS (github & doc)
2. Is a wrapper around the new Rust HEALPix library developped

by F.-X. Pineau.
3. Provides new features: polygon/cone and elliptical search.
4. Has very good performance

4.1 lonlat_to_healpix 10x faster than astropy_healpix
4.2 healpix_to_lonlat 7x faster than astropy_healpix
4.3 vertices (returns the position of the 4 vertices on the sky of a

HEALPix cell) 13x faster
4.4 cone_search 4x faster

• Make MOCPy an astropy affiliated package

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 19

https://github.com/cds-astro/cds-healpix-python
https://cds-astro.github.io/cds-healpix-python/
https://crates.io/crates/cdshealpix

Future developments
• Develop Rust extensions that will enhance the overall
performance of the library

• Rust is a new system programming language released in 2015
1. performant, safe and concurrent
2. compiled, no garbage collector, strong static rules (e.g. borrow

checker), generics, interfaces (i.e. Traits), no inheritance, type
inference. . .

3. open source, maintained/developped by Mozilla
• from_lonlat, from_json, from_fits, degrade_to_depth,

union, difference, intersection already ported in Rust
(See rust_ext branch)

• Some performance statistics:
1. Creating a MOC from 4.8M positions (from_lonlat) takes

~200-300ms (compared to ~5-10sec with the pure python
from_lonlat).

2. Loading the SDSS9 MOC (i.e. max depth: 11) now takes
~15ms compared to 450ms from the pure python from_fits.

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 20

https://github.com/cds-astro/mocpy/tree/rust_ext

Questions ?

Figure 6: Rendered with MOCPy

IVOA Interop May 2019 - Recent and Future Developments in MOCpy 21

	General presentation
	New developments tools
	Documentation
	Testing
	Continuous Integration

	New Features
	Plot MOC enhancement
	String (de)serialization
	Creating a MOC from a polygon

	Future of MOCPy
	Future developments

