

HARVARD & SMITHSONIAN

Source data model: inputs from the *Chandra* Source Catalog 2.0

F. Civano (CfA/CXC)

On behalf of Ian N. Evans and the Chandra Source Catalog team

Christopher Allen¹, Craig S. Anderson¹, Jamie A. Budynkiewicz¹, Douglas Burke¹, Judy C. Chen¹, Francesca Civano¹, Raffaele D'Abrusco¹, Stephen M. Doe², I. Evans, Janet D. Evans¹, Giuseppina Fabbiano¹, Daniel G. Gibbs II¹, Kenny J. Glotfelty¹, Dale E. Graessle¹, John D. Grier¹, Roger M. Hain¹, Diane M. Hall³, Peter N. Harbo¹, John C. Houck¹, Jennifer Lauer¹, Omar Laurino¹, Nicholas Lee¹, J. Rafael Martinez-Galarza¹, Michael L. McCollough¹, Jonathan C. McDowell¹, Warren McLaughlin¹, Joseph B. Miller¹, Douglas L. Morgan¹, Amy E. Mossman¹, Dan T. Nguyen¹, Joy S. Nichols¹, Michael A. Nowak⁴, Charles Paxson¹, David A. Plummer¹, Francis A. Primini¹, Arnold H. Rots¹, Aneta Siemiginowska¹, Beth A. Sundheim¹, Michael S. Tibbetts¹, David W. Van Stone¹, and Panagoula Zografou¹

¹Smithsonian Astrophysical Observatory ³Northrop Grumman Mission Systems

CHANDRA

²Formerly Smithsonian Astrophysical Observatory ⁴MIT Kavli Institute for Astrophysics and Space Research

> 1 2 5 : Observations p

CSC 2.0 in numbers

	CSC 1	CSC 2	
Individual obsids	5110	10,382	
Obsid years	1999-2009	1999-2014	45° 30°
Total exposure		245.8 Ms	15° 0° 135° 90° 45° 315° 270° 225°
longest exposure	190 ks	5.8 Ms	-15° -30°
Counts on-axis	~10	~5	-45° -60° 10 100 1000 Detections per stack -75° Detections per stack
Number of sources	106,586	315,875	
Number of detections	158,071	374,349	

100 1000 ons per stack

F. Civano – IVOA INTEROP Paris 2019

Observations p

Chandra detection attributes

- Name
- Position
- Arrival time/variability
- PHA/intensity
- Source extension

Position (x,y)

Pulse Height amplitude (PHA)

Arrivaltime

F. Civano – IVOA INTEROP Paris 2019

Summary

- The differences between sources and detections (each have properties!!)
- Properties aren't just simple numbers with a Gaussian error
- Everything is time variable --> linking together the measurements is important
- Properties depend on calibrations and assumptions (e.g., model spectrum) so they are as much a part of the model as the actual reported values

Source detection hierarchy

Stacked observations

STACKS: sum of obsids with pointings within 1 arcmin

Source detection hierarchy

Databased properties hierarchy

Master Source Properties

• Source name, position and position errors, significance, source flags, multi-band deconvolved extent, multi-band aperture photometry (photon and energy fluxes, spectral model fluxes [multiple spectral models]), hardness ratios, spectral model fits [multiple spectral models], multi-band intra- and inter-observation temporal variability

Stacked-Observation Detection Properties

 Position and position errors, multi-band significance, detection flags and codes, multi-band deconvolved extent, multi-band aperture photometry (net counts and count rates, photon and energy fluxes), aperture parameters, hardness ratios, multi-band intra- and inter-observation temporal variability

Per-Observation Detection Properties

Detector position, multi-band significance, detection flags and codes, multi-band raw, PSF, and deconvolved extent, multi-band aperture photometry (total counts, net counts and count rates, photon and energy fluxes, spectral model fluxes [multiple spectral models]), masked aperture parameters, spectral model fits [multiple spectral models], multi-band intra-observation temporal variability

Source Properties: Aperture Photometry

Fluxes are measured in each observation: Bayesian approach for simultaneous aperture photometry estimation in crowded fields (*Primini, F. A. & Kashyap, V. L. 2014*)

Grouping Observations to Improve S/N

- Multi-band Bayesian Blocks analysis (*Scargle+2013*) on detection fluxes to identify observations that can be analyzed/grouped together
- The combined properties for the longest exposure Bayesian Block are databased, but the properties for all blocks are recorded in a FITS data product

Grouping Observations to Improve S/N

cks

7077

4741

7081

- Multi-band Bayesian Blocks analysis (*Scargle+2013*) on detection fluxes to identify observations that can be analyzed/grouped together
- The combined properties for the langest expective Revesion Plack are databased but

master level fluxes --> the best flux block determined in the Bayesian Blocks analysis

0.02

(s) B 0.01

Temporal Variability

- Single observation: Gregory-Loredo Test: Hypothesis rejection test (i.e., odds ratio of assuming variability vs not assuming it). The probability that events detected are not arriving at a uniform rate. Used to estimate intra-obs variability (pick max prob among stack obsids).
- Multiple observations: Inter-observation variability. Variability test
 is based on a likelihood ratio between the null hypothesis of no variability, and the assumption of variability, when several observations are considered.

Science-Ready FITS Data Products

Observation Data Products

- Observation event list, aspect solution and histogram, bad pixel map, FoV, pixel mask
- Multi-band images, background images, exposure maps

Stacked-Observation Data Products

- Stack event list, FoV, merged detection list
- Multi-band images, background images, exposure maps, limiting sensitivity

Detection Region Data Products

- Detection region stack and observation region definitions, event lists
- Multi-band per-stack and per-observation images, exposure maps, position error MCMC draws, aperture photometry PDFs
- Multi-band per-observation PSFs, light curves
- Per-observation PHA spectrum, RMF, ARF

Source Level Data Products

• Aperture photometry PDFs, per-Bayesian block properties (aperture photometry fluxes, model energy fluxes, spectral fits, hardness ratios)

F. Civano – IVOA INTEROP Paris 2019

Spectral Analysis End C = net counts ŝ PHA, Select Group Yes C >= 150 0.5 – 7 keV 16 counts ARF, per bin RMF band Fit power law, Subtract black body, bremsstrahlung Calculate End background flux models

Summary

- The differences between sources and detections (each have properties!!)
- Properties aren't just simple numbers with a Gaussian error
- Everything is time variable --> linking together the measurements is important
- Properties depend on calibrations and assumptions (e.g., model spectrum) so they are as much a part of the model as the actual reported values

Thoughts on Source Models Ian N. Evans Chandra Source Catalog Project Scientist 2019 May 08

Introduction

The *Chandra Source Catalog* (CSC) is the definitive catalog of serendipitous X-ray sources identified in publicly released imaging observations obtained by NASA's *Chandra* X-ray Observatory (CXO). The CSC is developed and published by the *Chandra* X-ray Center (CXC) and is supported by NASA contract NAS 8-3060 to the Smithsonian Astrophysical Observatory for operation of the CXC. Release 2.0 of the CSC, including properties for approximately 316,000 X-ray sources on the sky extracted from about 375,000 detections, will be released in the next few months.

One major aim of the CSC is to make available detailed estimates of the X-ray properties of astronomical sources detected by the CXO in a way that enables them to be immediately useful for scientific investigations by members of the (multi-wavelength) astronomical community who may be less familiar with the details of X-ray data and their reductions and analyses, while simultaneously maintaining the utility of the catalog for X-ray astronomy domain experts. Because of the relative complexity of X-ray data analyses, considerable thought has been