

Training for the future, ML and Al

Shanshan Li, Chenzhou Cui, Yihan Tao

2019.5.15 Paris

Astronomy DATA

GAIA DR2

Celestial positions and Gaia 'G' magnitudes for nearly 1.7 billion stars

LSST 15 Terabytes every night

10-20 Petabyte every year

SKA

Will generate more data traffic than the entire Internet.

HUBBLE, SDSS, LAMOST, 2MASS, WISE, WMAP, IRIS, planck, ...

BIG MASSIVE TREASURE

FAST

Astronomy data in EPO

 Data Driven Astronomy Education and Public Outreach (DAEPO) Best-Practices:

THINK

Idea begins

National astronomical observatories (NAOC) and Aliyun started strategic cooperation in 2016

Astro Party

NAOC-Aliyun Lab organized several astronomy parties. Astronomers from many observatories and universities in China together with programmers in ALI Group discussed problems they interested in astronomy and learn from each other.

INSPIRED

Large Sky Area Multi-Object Fiber Spectroscopic Telescope Astro Data Mining Contest Intelligent classification of celestial spectrum

AI FUTURELAB: Discover supernova

Annual Statistics

Pilot Survey	First Year Survey	Second Year Survey	Third Year Survey
(2011.10.24-2012.06.17)	(2012.09.28-2013.06.03)	(2013.09.10-2014.06.03)	(2014.09.10-2015.05.30)
Total Spectra 906,420	Total Spectra 1,637,842	Total Spectra 1,588,520	Total Spectra 1,622,344
Star 807,575	Star 1,509,790	Star 1,462,309	Star 1,489,013
Galaxy 2,754	Galaxy 9,555	Galaxy 25,356	Galaxy 24,150
QSO 618	QSO 4,094	QSO 3,918	QSO 7,721
Unknown 95,473	Unknown 114,403	Unknown 96,937	Unknown 101,460

- Large Sky Area Multi-Object Fiber
 Spectroscopic Telescope
 - Highest spectral acquisition rate in the world.
- LAMOST DR6:
 - 4902 plates
 - More than 11,250,000 spectra
- Nearly 400 papers (2019/4)

Astro Data Mining Contest

- Target: Algorithm to classify spectrums from LAMOST DR3 (STAR/GALAXY/QSO/UNKNOWN)
- Participant: All public.

• Begin: Jan 19th, 2018

- First round: Participants download the data, debugging algorithm, and upload the result. (2 weeks)
- Second round: New data, upload result again. (2 days)
- Semi-final: Data E-mail to participants. They can use the platform resource to do the computation.
 (1 month)

Final score

	Semi-final: 70%	
•		

DATA

867,702 processed LAMOST data sample was provided for training.

400,000 spectrum data provided for test and ranking.

Summary

 Total 843 teams, 948 participants.

 70% students, 25% company employees, 5% teachers.

• From 5 different areas around the world.

Popular Supernova Project

 A citizen science project started by Xingming Observatory and China-VO in 2015.

 So far, 15 supernova and 4 nova was discovered through this project.

Al to find supernova

- Target: Design an algorithm to find supernova in pictures captured by telescope.
- Dataset: PSP images from 2015.
- Tagged objects: known, newtarget, isnova, isstar, asteroid
- Other tags: noise, ghost, pity
- 3 month

New image

history image

Difference

Participants

• 7 areas in China, 483 teams.

Summary

- Properly open scientific datasets, publish actual data problems to collect algorithms will help scientific research and popular science at the same time.
- For Public:
 - The participates may don't understand astronomy at all or don't have enough astronomy background to use the data.
 - Good chance to do DAEPO
- For scientist:
 - How will the winning algorithm help scientists.
 - Is there other problem or project can use the public's wisdom?