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Current SSO recommendation

2 IVOA Spring Interop 2020 – 4-8 May on-line

IVOA SSO describes how an IVOA application should apply a set of already standardized 
mechanisms to  support single sign-on capabilities. 
Approved standards for use in the SSO profile:

    No authentication required.

    HTTP Basic Authentication. (RFC7235 updating RFC2617)

    Transport Layer Security (TLS) with passwords. (RFC5246)

    Transport Layer Security (TLS) with client certificates. (RFC5246 & RFC6818)

    Cookies. (RFC6265)

    Open Authentication (OAuth). (RFC6749) 

    Security Assertion Markup Language (SAML). (saml-core-2.0-os OASIS standard)

   OpenID. (OpenID Foundation standards)

IVOA service providers exposing secured services register in the IVOA registry metadata 
expressing conformance to one or more of the authentication mechanisms approved in the 
IVOA SSO profile using the securityMethod element.    
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Groningen Interop, Markus Demleitner Talk

Gaia, CADC, LSST use http request headers: 

Gaia and CADC Cookie with some custom name

LSST RFC6750 authorization

Assuming all agree to use RFC 6750 (“Authorization: Bearer”),

Where to get the token?

Last discussion

https://wiki.ivoa.net/internal/IVOA/InterOpOct2019DAL/authlessons.pdf
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Introduce information on where to get the token with a tokenGetter element

<!-- Gaia: -->

<securityMethod standardID="ivo://ivoa.net/sso#RFC6750">

<tokenGetter type="userpass">https://<gaia>/tap/login

</tokenGetter></securityMethod>

<!-- CADC: -->

<securityMethod standardID="ivo://ivoa.net/sso#RFC6750">

<tokenGetter type="userpass">https://<cadc>/anywhere/login

</tokenGetter></securityMethod>

<!-- LSST: -->

<securityMethod standardID="ivo://ivoa.net/sso#RFC6750">

<tokenGetter type="manual">https://cilogin.org

</tokenGetter></securityMethod>

Last discussion: proposal
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How to return token?
in the html header or in the payload?

securityMethod:tokenGetter should be 1:1 or 1:n ?
Should we have an @title so clients can leave the choice to the user?

How to manage federated authentication?
Probably requiring the token to be a piece of signed (encoded) json

How to manage credential delegation?

One more question:

How to manage token refresh operation

Open questions
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Proposals

How to return token?
in the html header or in the payload?

Patrick Dowler present now a proposal
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Proposals

securityMethod:tokenGetter should be 1:1 or 1:n ?
Should we have an @title so clients can leave the choice to the user?

I leave this point completely open to discussion
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Proposals

How to manage federated authentication?

Probably requiring the token to be a piece of signed (encoded) json

Proposal: use JSON Web Token (JWT)       https://tools.ietf.org/html/rfc7519

JSON Web Tokens are URL-safe JSON-based security tokens 

that contain a set of claims 

that can be signed and/or encrypted

Example: 

a server could generate a token that has the claim "logged in as admin" and 
provide that to a client

https://tools.ietf.org/html/rfc7519
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Proposals

How to manage credential delegation?

Just a proposal: 

OAuth 2.0 Token Exchange
https://tools.ietf.org/html/rfc8693

OAuth 2.0 for Native Apps                     (Already cited in Groningen)
https://tools.ietf.org/html/rfc8252

The OAuth Security Model for Delegated Authorization
https://tools.ietf.org/id/draft-barnes-oauth-model-01.html
This document describes the security model for the OAuth authorization system, which allows a party 

that holds some authorization to delegate a subset of that authorization to another party, without 

requiring either party to disclose its credentials to the other.

https://tools.ietf.org/html/rfc8693
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/id/draft-barnes-oauth-model-01.html
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Proposals

How to manage token renewal operation

The OAuth 2.0 Authorization Framework
https://tools.ietf.org/html/rfc6749#page-10

Refresh Token

Refresh tokens are credentials used to obtain access tokens.  Refresh

tokens are issued to the client by the authorization server and are

used to obtain a new access token when the current access token

becomes invalid or expires

https://tools.ietf.org/html/rfc6749#page-10
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