
Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Single sign on: towards a new standard

able to allow apps and services to access easily private data

S. Bertocco

IVOA Spring Interop 2020 – 4-8 May on-line

Funded by the European Union’s
Horizon 2020 - Grant N° 824064

Current SSO recommendation

2 IVOA Spring Interop 2020 – 4-8 May on-line

IVOA SSO describes how an IVOA application should apply a set of already standardized
mechanisms to support single sign-on capabilities.
Approved standards for use in the SSO profile:

 No authentication required.

 HTTP Basic Authentication. (RFC7235 updating RFC2617)

 Transport Layer Security (TLS) with passwords. (RFC5246)

 Transport Layer Security (TLS) with client certificates. (RFC5246 & RFC6818)

 Cookies. (RFC6265)

 Open Authentication (OAuth). (RFC6749)

 Security Assertion Markup Language (SAML). (saml-core-2.0-os OASIS standard)

 OpenID. (OpenID Foundation standards)

IVOA service providers exposing secured services register in the IVOA registry metadata
expressing conformance to one or more of the authentication mechanisms approved in the
IVOA SSO profile using the securityMethod element.

Funded by the European Union’s
Horizon 2020 - Grant N° 8240643

Groningen Interop, Markus Demleitner Talk

Gaia, CADC, LSST use http request headers:

Gaia and CADC Cookie with some custom name

LSST RFC6750 authorization

Assuming all agree to use RFC 6750 (“Authorization: Bearer”),

Where to get the token?

Last discussion

https://wiki.ivoa.net/internal/IVOA/InterOpOct2019DAL/authlessons.pdf

Funded by the European Union’s
Horizon 2020 - Grant N° 8240644

Introduce information on where to get the token with a tokenGetter element

<!-- Gaia: -->

<securityMethod standardID="ivo://ivoa.net/sso#RFC6750">

<tokenGetter type="userpass">https://<gaia>/tap/login

</tokenGetter></securityMethod>

<!-- CADC: -->

<securityMethod standardID="ivo://ivoa.net/sso#RFC6750">

<tokenGetter type="userpass">https://<cadc>/anywhere/login

</tokenGetter></securityMethod>

<!-- LSST: -->

<securityMethod standardID="ivo://ivoa.net/sso#RFC6750">

<tokenGetter type="manual">https://cilogin.org

</tokenGetter></securityMethod>

Last discussion: proposal

Funded by the European Union’s
Horizon 2020 - Grant N° 8240645

How to return token?
in the html header or in the payload?

securityMethod:tokenGetter should be 1:1 or 1:n ?
Should we have an @title so clients can leave the choice to the user?

How to manage federated authentication?
Probably requiring the token to be a piece of signed (encoded) json

How to manage credential delegation?

One more question:

How to manage token refresh operation

Open questions

Funded by the European Union’s
Horizon 2020 - Grant N° 8240646

Proposals

How to return token?
in the html header or in the payload?

Patrick Dowler present now a proposal

Funded by the European Union’s
Horizon 2020 - Grant N° 8240647

Proposals

securityMethod:tokenGetter should be 1:1 or 1:n ?
Should we have an @title so clients can leave the choice to the user?

I leave this point completely open to discussion

Funded by the European Union’s
Horizon 2020 - Grant N° 8240648

Proposals

How to manage federated authentication?

Probably requiring the token to be a piece of signed (encoded) json

Proposal: use JSON Web Token (JWT) https://tools.ietf.org/html/rfc7519

JSON Web Tokens are URL-safe JSON-based security tokens

that contain a set of claims

that can be signed and/or encrypted

Example:

a server could generate a token that has the claim "logged in as admin" and
provide that to a client

https://tools.ietf.org/html/rfc7519

Funded by the European Union’s
Horizon 2020 - Grant N° 8240649

Proposals

How to manage credential delegation?

Just a proposal:

OAuth 2.0 Token Exchange
https://tools.ietf.org/html/rfc8693

OAuth 2.0 for Native Apps (Already cited in Groningen)
https://tools.ietf.org/html/rfc8252

The OAuth Security Model for Delegated Authorization
https://tools.ietf.org/id/draft-barnes-oauth-model-01.html
This document describes the security model for the OAuth authorization system, which allows a party

that holds some authorization to delegate a subset of that authorization to another party, without

requiring either party to disclose its credentials to the other.

https://tools.ietf.org/html/rfc8693
https://tools.ietf.org/html/rfc8252
https://tools.ietf.org/id/draft-barnes-oauth-model-01.html

Funded by the European Union’s
Horizon 2020 - Grant N° 82406410

Proposals

How to manage token renewal operation

The OAuth 2.0 Authorization Framework
https://tools.ietf.org/html/rfc6749#page-10

Refresh Token

Refresh tokens are credentials used to obtain access tokens. Refresh

tokens are issued to the client by the authorization server and are

used to obtain a new access token when the current access token

becomes invalid or expires

https://tools.ietf.org/html/rfc6749#page-10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

