
TAP-next: User-managed Tables in TAP

Patrick Dowler
Canadian Astronomy Data Centre

people: Brian Major, Adrian Damian

Topics

● API extensions for TAP: implemented at CADC and in use by
projects (mainly CANFAR youcat service)

● open questions/concerns

● API extensions: requested/ideas - not implemented

Context

● CANFAR youcat service: ivo://cadc.nrc.ca/youcat
○ schemas: 5
○ tables: 81
○ columns: 5210
○ primarily astronomical source catalogues

● permissions
○ 4 public, 1 private schema
○ 28 public tables: anon query
○ 53 private tables: 40 owner only, 13 readable (queryable) by

group
○ 18 tables where a group has been granted read-write (insert)

● metadata for those 5210 columns
○ 4491 real: 3216 float, 1242 double, 29 point, 4 polygon
○ 5% of “real” columns have a unit
○ 29% of columns have a description
○ 3% of columns have UCDs

Context: existing software

● server: https://github.com/opencadc/tap
○ most code implemented in the libraries
○ complete youcat service build available
○ prebuilt docker image: images.opencadc.org/core/youcat

○ limitations: currently PostgreSQL+pgsphere only
○ important admin not documented
○ several critical TODOs documented
○ future plans documented

● client: cadctap client

● client: pyvo feature branch (Adrian Damian)

https://github.com/opencadc/tap

Necessary API

● list tables: VOSI-tables (or tap_schema)

● get table metadata: VOSI-tables (or tap_schema)
○ GET /youcat/tables/{table_name}

● create table
○ PUT /youcat/tables/{table_name}

● update table metadata
○ POST /youcat/tables/{table_name}

● drop table
○ DELETE /youcat/tables/{table_name}

Necessary API

● load data
○ POST /youcat/load/{table_name}
○ this designed mainly around good clean error reporting and

recovery
○ it is really “append rows” so client can gradually add data and

can resume after partial success

● create index (async: parameter-style UWS job)
○ POST /youcat/table-update
○ TABLE={table_name}
○ INDEX={column_name}
○ UNIQUE=true (default: false)
○ param limitations: single column only
○ why async? can be done after table load so it takes time,

service can control/schedule execution of such jobs
○ checks and updates tap_schema.columns.indexed

Necessary API

● get permissions
○ GET /youcat/permissions/{name}
○ name: schema or table name
○ document: simple ascii key=value

● set permissions
○ POST {document} /youcat/permissions/{name}
○ doc specifies all permissions: single call, also removes
○ property names, cardinality, file format all rough prototype

Permissions: public vs project/team vs private

● schema and table properties:
○ owner
○ anonymous read
○ group read permission
○ group with read-write permission

● on schema: read permission lets you list tables
○ effects: VOSI-tables and query on tap_schema

● on schema: write permission lets you create and drop tables

● on table: read permission lets you query
○ effects: query validation, not found vs permission denied

● on table: write permission lets you modify metadata, append rows,
create index

● owner: read-write + change permissions + drop table

Open questions

● prototype involves new endpoints
○ TAP standardID fragments?
○ registry extension with <endpoints>...

● prototype extends VOSI-tables (more HTTP verbs)
○ registry extension to list supported verbs
○ modify VOSI?
○ define extension in TAP?
○ create a new standard that defines the extension?

Open questions

● publish table metadata to IVOA registry?
○ table metadata under user control: dynamic
○ changes have to propagate: temporary discrepancies (reality)

○ opt-in: publish has to be chosen/enabled by owner (opinion)

○ explicit publish action by owner? part of API or site-specific?

○ conservative: only publish public (anon queryable) tables? at
least to start…

○ service operator responsible for metadata “quality” review?

Other API

● augment tap_schema with new schema and table properties?
○ enables users to manage their content
○ exposes permissions to users of TAP so they can understand

some failures and ask for permission

○ youcat: implemented in tap_schema but not exposed

○ would require 4 new optional columns:
■ owner datatype=”char” arraysize=”*”
■ anon_read datatype=”boolean” (or “int”?)
■ group_read datatype=”char” arraysize=”*” xtype=”uri”
■ group_write datatype=”char” arraysize=”*” xtype=”uri”

Other API aka “things people asked for”

● rename table or column?
○ dynamic table metadata

● multi-column index??
○ not describable in tap_schema right now

● explicit primary key?
○ not explicit in tap_schema right now

● declare foreign keys??
○ add to tap_schema.keys, also modify? remove?
○ constraint optional? can just be a “how to join”

● update: replace rows by PK
○ requires explicit PK above
○ explicit update or just re-load?
○ single row? size limit? (intent: one transaction so modest size)

● delete rows with WHERE clause?
○ async job
○ probably has to be batched into multiple transactions like load

Summary

● extend TAP standard to support user-managed tables: TAP-1.2
○ all features would be optional
○ extend VOSI-tables API
○ endpoints for uploading rows, permissions, async jobs
○ extend tap_schema to permission permissions

● publish user tables to IVOA registry

● wishlist of additional features: less necessary and harder to do

shameless plug
https://github.com/opencadc/tap

https://github.com/opencadc/tap

