
THIS IS THE TITLE HERE

This is the Subtitle Here
03.15.2017

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

Python TAP Implementation at MAST:
Lessons Learned

Joshua Fraustro
May 9th, 2023

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

1

The Development Team

MAST - Archive Science Applications Branch
 “Evergreen Team”

2

Tom Donaldson Theresea Dower Chinwe Edeani

Ben Falk Joshua Fraustro Sarah Weissman

Implementation - VO-TAP

• TAP v1.1 Python Microservice
• Replaces MAST’s current C# / Microsoft IIS service
• Uses FastAPI web framework
- Simple, fast API building, used in our other web services
- Pre-existing familiarity with the team
- Takes advantage of Pydantic models for validating requests / responses

• Celery for asynchronous task management
- Simple task queue / worker message system
- Easily scalable
- Uses shared Redis cache for backend / message brokering

3

Implementation - VO-TAP cont.

• Much needed visual facelift for service landing pages.

4

Implementation - VO-TAP cont.

Performance Improvements
• Approximately 6-7x faster asynchronous queries
• Outperforms current service in synchronous queries w/ 1000’s-10,000’s of rows

5

Facing the Standard(s)

• Where to start?
- Difficult to approach the standard(s)

without a previous implementer /
example service to reference.

- Given the majority of the team’s
experience with VO services, many of
us approached  
this service essentially from scratch.

- There is a significant “bus-factor” in
familiarity with decades of standards
revisions.

- Made all the more difficult by many
overlapping standards.

6

Facing the Standard(s)

7

• “Out of one (standard), many.”
- TAP requires comprehending:
‣ UWS, VOSI, ADQL, DALI, VOTable, etc.
‣ We were saved by our microservices

approach and previous projects that
touched these standards.

‣ VOTable creation had already been
implemented for SCS / others.

‣ ADQL -> SQL translator could be reused.
- These standards often do not agree or  

are ambiguously worded, despite efforts 
to clarify (RFC2119).
‣ Some clients expect things that are fully 

optional (pyvo and WAIT).

Facing the Standard(s)

• … sometimes usefeul information is lost between versions.
‣ “How do you handle overflows in other formats?”

• From TAP 1.1:

• DALI 1.1:
- Only describes overflow handling  

for VOTables.
- Is there a defined way to do it for 

other formats then?
- Check the older standards… 

• But in TAP 1.0:
- The detail of many standards varies between documents, versions.

8

Facing the Standard(s)

• Difficult to say which standard will address any particular parameter / specification.
- “What is a valid RunID?”

9

• UWS: 

• TAP: 

• DALI: 

Facing the Standard(s)

• If there was an easy answer, it probably would
have been done!

• For implementors, something between an
“overview” and the technical standards.
- “Service implementer’s guide” 

 - James Tocknell, 2022
- A “MUST/SHOULD/MAY” service cheatsheet.

• Standards documents:
- Check “fully described by” references.
- Dynamic linking to referenced standards would be

nice.
- Hard to discover issues until you try implementing

the standard.

10

So, what to do?

“How 1600 taplint errors brought me to Bologna…”

• Taplint was an absolutely invaluable
resource to have during
implementation!

• Routine testing during development
caught minute “gotchas” in our
standards implementation.

• Wished there was slightly more
debugging / verbosity in outputs.
‣ Had to dive into source code to figure out

which query caused which failure.
‣ Potentially add a flag to show traceback of

failed validation step.

• Potential integration with our CI / CD
pipeline to prevent gradual schema
drift.

11

“How 1600 taplint errors brought me to Bologna…”

• For messy or conflicting standards,
conforming our service to what the
validator expected was useful.

• Not necessarily best practice, but it
meant our service conformed to
something.

• Sometimes that meant picking something
that made the most sense, whether or
not it was the “most correct”.

• Seen with the DALI /examples resource.
• We picked “TAPNOTE_VOCAB” to

maintain compatibility with TOPCAT and
our previous service.

12

Serialization Woes - “445 LoC to write a UWS response”

13

• Building XML documents for VO responses is more
challenging than it seems at first glance.

• Previous approaches (for VOTable) involved string
building / concatenation.
- Issues:
‣ Requires a lot of logic for element placement & validation.
‣ Logic is specific to individual VO object types:

JobSummary vs. ShortJobDescription
‣ Tedious to write, easy to break in updates

✦ Hard to cover version changes in a backwards-compatible
way.

‣ Separate functionality needed for reading / writing.
- Benefits:
‣ allows for streaming responses from the service for

returning large tables
‣ Enabled handling overflows easily, since we build the

table one row at a time.

Serialization Woes - “445 LoC to write a UWS response”

14

• Set our sights on a better way to represent and handle UWS standard.
• Desired solution should have:
- Automatic, internal VO schema validation.
‣ Should validate when created in code, or read from a database.

- Object-oriented creation / modification.
- Hands-off XML output & serialization.
- Developer-focused:
‣ Don’t spend dev time on the minutiae
‣ Ex: adding the RunId to a JobSummary should be as simple as job_summary.run_id = “xyz”
‣ Shouldn’t have to know the schema or standard specifics to work with the code.

✦ But also able to make changes when necessary!

Serialization Woes - “445 LoC to write a UWS response”

15

• “Pydantic-xml” package was our solution
- https://github.com/dapper91/pydantic-xml

Pros: Cons:

Any VO resource can be designed
as a data model.

Can’t use objects with streaming
responses

Object-oriented A bit of upfront work to write the models

One-line XML serialization. Package is early in development - documentation is
lacking

Automatic schema validation
(if you wrote it right!)

Optional “nillable” elements are a headache

https://github.com/dapper91/pydantic-xml

Pydantic-xml JobSummary Example

16

Defining the JobSummary model:

Pydantic-xml JobSummary Example

17

Adding validators:

Pydantic-xml JobSummary Example

18

Instantiate and edit like any Python object:

Pydantic-xml JobSummary Example

19

Serializing the response:

Pydantic-xml JobSummary Example

20

Automatically handles child elements!
‘ResultReference’ and ‘Parameters’ are models too.

Pydantic-xml JobSummary Example

21

Automatically handles child elements!
For: /async/{job_id}/parameters: For: /async/{job_id}/results:

Metadata Madness

• How to ensure VOTable compliant
datatypes without access to
TAP_SCHEMA.columns?
‣ We previously just assumed a “char(*)”!

• We use the pyodbc package for interacting
with the database.
- pyodbc will convert database results from

their SQL_TYPE to the closest Python object
type.

- Because of the “flexible” nature of Python
type objects, we lose the specificity of the
datatype.
‣ short, int, long -> Python int

• For other projects, we don’t want to rely on
TAP_SCHEMA or make additional calls.

22

Metadata Madness

23

• Pyodbc gives us the bit precision of the
database column!
- The precision is the fractional portion of

the value + the sign.
‣ A precision of 24 = float, 53 = double, etc.

- We can then map them to their matching
VOTable datatypes to fill out FIELD
elements.

- VOTable compliant datatypes can be
provided without schema awareness and
agnostic of database driver.

