
Software containers and reproducibility: 
what can IVOA learn from it?

Stefano alberto Russo - INAF 
IVOA May 2023 Interoperability Meeting



The dependency hell

- How to compile a software?

- How to set up a software?

- How to reproduce a run?



Solutions spectrum

Requirement
specifications

Statically 
linked

binaries

Virtual 
environments Containerization VMs VMs with

hardware 
emulation



Software containers

“A container image is a lightweight, standalone, executable package of software 
that includes everything needed to run an application: code, runtime, system tools, 
system libraries and settings.”

Open Container Initiative standards:

- Images (incremental FS bundles)

- Registries and manifests

- Runtimes (hi and low level)



Containerisation landscape



The definitive(-ish) solution for reproducibility

- All dependencies always carried with the container

- Multi-OS and multi-architecture support

- Engines and runtimes for every need
- Rootful

- Root-less

- With Kernel virtualisation

- With HW virtualisation and emulation
- which are basically VMs, but with all the

containerisation ecosystem benefits



But wait.. where is all the complexity gone?



Hidden complexity 

- Multiple architectures and OSes → multiple images per tag!

- Docker desktop (Mac/Win) does HW emulation if working with non-native architectures
- and crashes with instruction set-optimized executables, i.e. Chrome

- Rootful, rootless, virtualisation etc. bring unexpected incompatibilities
- limitations, UIDs/GIDs, file permissions, PIDs, networking…

- Container registries with private containers still hard to support

- Drop-in replacements (i.e. Podman, Kata) are such until they are not

- Creating truly re-buildable Dockerfiles requires good craftsmanship

- Kernel-level optimisation basically do not fit with the “build once, run everywhere”



Takeaways

- Software containers are in general very good for reproducibility

- Lot of complexity was hidden but is re-arising

- Apple Silicon didn’t help

- Some early days, naive choices are basically design flaws

- will be hard to eradicate

- An informed, educated usage can solve the majority of the issues

Thank you!


