
Users, Groups, and Auth in SRCNet
SRCNet: SKA Regional Center Network

Patrick Dowler
Canadian Astronomy Data Centre

with: Brian Major (CADC), SRCNet Purple team, ThoughtWorks

General context applicable to IVOA

● clients sometimes need to authenticate to services
○ not browsers, web sites, portals
○ command-line tools, automated processes, batch jobs
○ astroquery, pyvo tools, etc…
○ topcat, aladdin, etc

● services and authentication
○ access to proprietary metadata and data in archives: all of DAL
○ access to project resources during research phase: VOSpace,

database tables (youcat), code (docker images)
○ access to resources that inherently require permission because

of resource usage: computing, write/modify to storage

SRCNet prototype: work in progress

● prototype work done by the Purple (A&A) team
○ IAM service to provide user accounts and access tokens
○ implements OpenID Connect (OIDC) portal and services
○ GMS API front end for IAM implemented by ThoughtWorks

● goal for prototype work done by CADC
○ Coral team deploy storage-inventory system provided by CADC
○ users/clients login to IAM and get a token
○ clients make requests to data management services and

authenticates with http header:
www-authenticate: bearer {token}

○ service can validate the token
○ service obtains minimal user identity info: a uuid, username, etc.
○ to be verified: service can use the token to call a GMS service to

determine of the user is a member of authorized group(s)

SRCNet prototype: work in progress - using oidc-agent

● register client using device flow (once):
oidc-gen --iss=https://ska-iam.stfc.ac.uk --flow=device
 --scope max pdowler-ska

(“client” info in ~/.config/oidc-agent/ – a long-lived refresh token)

● load an account (once in awhile):
oidc-add pdowler-ska
Enter decryption password for account config 'pdowler-ska':

● get or refresh access token:
SKA_TOKEN=$(oidc-token pdowler-ska)

● use the access token, for example verify it:
curl -s -H "authorization: bearer $SKA_TOKEN"
 https://ska-iam.stfc.ac.uk/userinfo | jq
{
 "sub": "211b77e1-686a-4116-bcff-1b2a85c442e1",
 "preferred_username": "pdowler", ...

SRCNet prototype: work in progress - server side

● OpenCADC libraries allow one to plug in an IdentityManager
○ code to validate authentication attempts and obtain user identity
○ prototype OIDC IdentityManager included in cadc-gms library
○ requires configuration of a “trusted” identity provider

● validate token: calls the trusted identity provider with token provided
by client

● retains the credential (token) in request context for additional calls
○ currently: only send token to trusted identity provider (server

name)
● if GMS is deployed on same server as IAM, then calls to GMS would

work, otherwise: token will not be sent

code for cadc-gms library: https://github.com/opencadc/ac

https://github.com/opencadc/ac

SRCNet prototype: client side

● clients can call service with token:
SKA_TOKEN=$(oidc-token pdowler-ska)
curl –head -H "authorization: bearer $SKA_TOKEN"
 https://example.net/service/capabilities
x-vo-authenticated: pdowler

● tidbits:
○ my oidc-agent “client” has a (permanent) refresh token, uses it

to get short-lived access tokens
○ tokens expire in 1 hour, probably IAM default and it appears to

be the maximum

● simple: run code with the short-lived access token
● probably: run code with refresh token, code needs to obtain access

tokens periodically using OIDC APIs

https://example.net/service/capabilities

Summary

● server side: learned how to write plugin code to validate incoming
tokens

● client side: can use oidc-agent to register a client and get access
tokens for command line usage

● did not encounter any advice on how to a user/client is supposed to
know where to get a token to access a service, and

● did not encounter any advice on how a user/client with a token
should know where to send (and not send) tokens

● TODO: users/code that encounters and uses several URLs needs to
know when to include the authorization header

● TODO: Let’s discuss!

