
Mario Juric
DiRAC Institute Director | LINCC FW Co-I

Professor of Astronomy, University of Washington

HiPSCat: Enabling Storage and Analytics of
Large-Scale Catalogs

DATA INTENSIVE RESEARCH IN
ASTROPHYSICS AND COSMOLOGY

with Sam Wyatt, Sean McGuire, Melissa DeLucchi, Max West, Doug Branton,
Neven Caplar, Steven Stetzler, Colin Slater, Jeremy Kubica

and the LINCC Frameworks Analytics Group

AST-2003196

To collaboratively develop open computing systems
and algorithms needed for large-survey analyses.

• Data analysis infrastructure (this talk)
• Solar System exploration
• Time domain science
• Extragalactic astronomy

Two LINCC-FW hubs:
• Carnegie Mellon University
• University of Washington

The LINCC Frameworks Project

The Legacy Survey of Space and Time
Deep synoptic optical survey, coming in 2025.

Repeated imaging of the visible sky to ~24th mag.
10 years of operation.
60 PB of raw data.
40 billion stars, galaxies, asteroids.
30 trillion observations.

LSST Interdisciplinary Network For Collaboration And Computing

Rubin Observatory, March 15, 2023.
Cerro Pachon, Chile

Rubin Observatory, Telescope Mount Assembly
Ran full night of ”observing” (a week ago)

Rubin Camera (October 31, 2022, SLAC)
Being shipped to Chile in ~October 2023.

One of the major things the community
will want to do with Rubin is

whole dataset science.

Scale of the problem

Rubin Year #1 dataset:
• 10Bn objects
• 100 obsv/object == 1T observations
• 100 bytes/obsv == 100 TB

Not just a Rubin Problem:
• Gaia, DES, ZTF, WISE, PS, Euclid, Rubin, Roman, SphereX, …
• Each one of these is Bn+ objects (w. many more measurements)

Fellow Travelers on the Quest

Sam Wyatt (Product Owner), Sean McGuire, Melissa DeLucchi (Project Manager)
Max West, Doug Branton, Neven Caplar, Steven Stetzler, Jeremy Kubica

Vandana Desai (IPAC), Troy Raen (IPAC), Dave Shupe (IPAC), Brigitta Sipőcz (IPAC)
Gregory Dubois-Felsmann (IPAC & Rubin)
Colin Slater (DiRAC & Rubin)
Sharon Shen (STScI)
Susan Mullally (STScI)
Rick White (STScI)
Bernie Shiao (STScI)
Travis Berger (STScI)
Erik Tollerud (STScI)
Josh Peek (STScI)
Tess Jaffe (HESARC)

+ YOU (join the party!)

Large-dataset Analytics: Partitioned Files

● Relational databases are not ideal
for this type of work. Poor UX,
too many bottlenecks.

● Industry state of-the-art is to use
distributed analytics tools
operating on files.

● Distributed computation achieved
through partitioning.

10

How to partition? Historically, we haven’t generally given
this much thought…

11

There’s value in thinking this through, and
standardizing

• Users know what to expect and how to handle the dataset
• High quality, shared, analytics tools can be written
• Multi-dataset analytics can supported
• Pre-staging/ETL may be avoided

• Bulk export files == bulk analytics files
• Easier to generate and support for providers
• Can share code and infrastructure (e.g. mirroring, caching)

Think of all the wonderful tools and ecosystems that sprung up around HiPS!

Imagine a dataset with approximately
1,811,709,771 sources…

… how could we store it?

Gaia DR3

14

The 1.8Bn sources
released in Gaia DR3

A single ASCII file would
be about ~680GB in size,
(gzip compressed).

1. Partitioning: HEALPix

15

Partition the sky into NSIDE=1 (order=0)
HEALPix tiles, map tiles to files.

Example:

Norder0-Npix0.tsv.gz
Norder0-Npix1.tsv.gz
Norder0-Npix2.tsv.gz
Norder0-Npix3.tsv.gz
Norder0-Npix4.tsv.gz
Norder0-Npix5.tsv.gz
Norder0-Npix6.tsv.gz
Norder0-Npix7.tsv.gz
Norder0-Npix8.tsv.gz
Norder0-Npix9.tsv.gz
Norder0-Npix10.tsv.gz
Norder0-Npix11.tsv.gz

Problem: Severely unbalanced file sizes

16

Pixel 4 (Galactic pole) ~ 20GB
Pixel 10 (Galactic center) ~ 400GB.

Simple file-based parallelization
fails.

Example

Norder0-Npix0.tsv.gz
Norder0-Npix1.tsv.gz
Norder0-Npix2.tsv.gz
Norder0-Npix3.tsv.gz
Norder0-Npix4.tsv.gz
Norder0-Npix5.tsv.gz
Norder0-Npix6.tsv.gz
Norder0-Npix7.tsv.gz
Norder0-Npix8.tsv.gz
Norder0-Npix9.tsv.gz
Norder0-Npix10.tsv.gz
Norder0-Npix11.tsv.gz

1 min

20 min

Npix4

Npix10

Solution: Partition Hierarchically

17

If too many sources fall into a pixel,
split it into four higher order pixels.

Example

Norder0-Npix0.tsv.gz
…
Norder0-Npix7.tsv.gz
…
Norder0-Npix11.tsv.gz

1. Partition Hierarchically

18

If too many sources fall into a pixel,
split it into four higher order pixels.

Example

Norder0-Npix0.tsv.gz
…
Norder1-Npix28.tsv.gz
Norder1-Npix29.tsv.gz
Norder1-Npix30.tsv.gz
Norder1-Npix31.tsv.gz
…
Norder0-Npix11.tsv.gz

1. Partition Hierarchically

19

If too many sources fall into a pixel,
split it into four higher order pixels.

Repeat.

Example

Norder0-Npix0.tsv.gz
…
Norder1-Npix28.tsv.gz
Norder1-Npix29.tsv.gz
Norder1-Npix30.tsv.gz
Norder1-Npix31.tsv.gz
…
Norder0-Npix11.tsv.gz

1. Partition Hierarchically

20

If too many sources fall into a pixel,
split it into four higher order pixels.

Repeat.

Example

Norder0-Npix0.tsv.gz
…
Norder1-Npix28.tsv.gz
Norder1-Npix29.tsv.gz
Norder1-Npix30.tsv.gz
Norder2-Npix112.tsv.gz
Norder2-Npix113.tsv.gz
Norder2-Npix114.tsv.gz
Norder2-Npix115.tsv.gz
…
Norder0-Npix11.tsv.gz

1. Partition Hierarchically

21

If too many sources fall into a pixel,
split it into four higher order pixels.

Repeat until each file size
is beneath some
pre-defined threshold.

Figure: an overlay of
Gaia counts and the
partitioning map, taking
MAXOBJECTS=1e6

order:
3993 partitions for Gaia DR3, with 1M

object/partition threshold

2. On-disk organization

22

Holding everything in a single
directory is unwieldy (at best).

A directory structure encoding
the hierarchy would be helpful.

Norder0-Npix0.tsv.gz
…
Norder1-Npix28.tsv.gz
Norder1-Npix29.tsv.gz
Norder1-Npix30.tsv.gz
Norder2-Npix112.tsv.gz
Norder2-Npix113.tsv.gz
Norder2-Npix114.tsv.gz
Norder2-Npix115.tsv.gz
…
Norder0-Npix11.tsv.gz

2. On-disk organization: HiPS-like Directories

23

Fortunately, we have a
precedent in VO on how to
organize hierarchically
partitioned HEALPix data: HiPS.

Norder0/Dir0/Npix0.tsv.gz
…
Norder1/Dir0/Npix28.tsv.gz
Norder1/Dir0/Npix29.tsv.gz
Norder1/Dir0/Npix30.tsv.gz
Norder2/Dir0/Npix112.tsv.gz
Norder2/Dir0/Npix113.tsv.gz
Norder2/Dir0/Npix114.tsv.gz
Norder2/Dir0/Npix115.tsv.gz
…
Norder0/Dir0/Npix11.tsv.gz

Note: Hierarchical Progressive Surveys

24

While we use a HiPS-like
directory structure, we only
store data at the leaf nodes.

I.e., there are no lower-
resolution files at lower orders.

Norder0/Dir0/Npix0.tsv.gz
…
Norder1/Dir0/Npix28.tsv.gz
Norder1/Dir0/Npix29.tsv.gz
Norder1/Dir0/Npix30.tsv.gz
Norder2/Dir0/Npix112.tsv.gz
Norder2/Dir0/Npix113.tsv.gz
Norder2/Dir0/Npix114.tsv.gz
Norder2/Dir0/Npix115.tsv.gz
…
Norder0/Dir0/Npix11.tsv.gz

e.g., there’s no Norder1/Dir0/Npix31.csv

Note: Hierarchical Progressive Surveys

25

Norder0/Dir0/Npix0.tsv.gz
…
Norder1/Dir0/Npix28.tsv.gz
Norder1/Dir0/Npix29.tsv.gz
Norder1/Dir0/Npix30.tsv.gz
Norder2/Dir0/Npix112.tsv.gz
Norder2/Dir0/Npix113.tsv.gz
Norder2/Dir0/Npix114.tsv.gz
Norder2/Dir0/Npix115.tsv.gz
…
Norder0/Dir0/Npix11.tsv.gz HiPSCat → MOCHA? (e.g. Multi-order Catalogs in HEALpix for

Astronomy? Bacronym suggestions welcome!)

While we use a HiPS-like
directory structure, we only
store data at the leaf nodes.

I.e., there are no lower-
resolution files at lower orders.

This is really a MOC
(multi-order coverage map; https://ivoa.net/documents/MOC/)

https://ivoa.net/documents/MOC/

3. Serialization

26

TSV is not ideal for large catalog
storage and analytics.

Time-consuming to parse and
(de)compress. Also not seekable.

FITS? HDF5?

Norder0/Dir0/Npix0.tsv.gz
…
Norder1/Dir0/Npix28.tsv.gz
Norder1/Dir0/Npix29.tsv.gz
Norder1/Dir0/Npix30.tsv.gz
Norder2/Dir0/Npix112.tsv.gz
Norder2/Dir0/Npix113.tsv.gz
Norder2/Dir0/Npix114.tsv.gz
Norder2/Dir0/Npix115.tsv.gz
…
Norder0/Dir0/Npix11.tsv.gz

3. Serialization: Parquet

27

TSV is not ideal for large catalog
storage and analytics.

We use Parquet.

Key features:
ü Designed for storage of large tables
ü Columnar
ü Efficient (binary)
ü Transparent compression
ü Data Integrity (checksums)
ü Partitioning
ü Broad multi-language support
ü Broad tool support
ü Strong industry backing
ü Open source

3. Serialization: Parquet

28

Parquet readers natively support
reading partitioned datasets if
they’re stored in directories following
<key>=<value> naming format.

We make that small tweak…

Norder=0/Dir=0/Npix=0/catalog.parquet
…
Norder=1/Dir=0/Npix=28/catalog.parquet
Norder=1/Dir=0/Npix=29/catalog.parquet
Norder=1/Dir=0/Npix=30/catalog.parquet
Norder=2/Dir=0/Npix=112/catalog.parquet
Norder=2/Dir=0/Npix=113/catalog.parquet
Norder=2/Dir=0/Npix=114/catalog.parquet
Norder=2/Dir=0/Npix=115/catalog.parquet
…
Norder=0/Dir=0/Npix=11/catalog.parquet

All together: HiPSCat*

29

Gaia DR2 Catalog Counts (log scale) Visualization of file storage (color = healpix level)
3933 partitions of similar size (128-256 MB)

Inspired by the widely used IVOA HiPS standard. Standing on the shoulders
of giants (Pierre, Mark, Thomas et al; REC-HIPS-1.0-20170519).

Layout on “disk”:

👇

(*) We may need to change the name to avoid
confusion with true HiPS catalogs

What can we do with this?

Download spatial subsets of a catalog

order = 7
pixel size size = 0.46deg

order = 2
pixel size size = 14.7deg

Given a region of the sky, it’s straightforward to find which
partitions cover the region (and

download those files)

Use case #1: downloading
overlapping subsets of large
catalogs.

Use case #2: efficiently
download a subset of columns.

Parquet’s columnar layout
enables downloading only the

columns of interest

Straightforward Parallel Whole-Catalog Computation

Enables very simple parallel computation schemes:
per-file parallelization.

Use case #3: complex searches, feature
computation, spatial processing (clustering)

Cloud-compatible: partitions can be stored on object store
(S3, GCS, etc.) providing tremendous bandwidths.

(2,4)

(2,3)

(2,1)

(3,9)

(3,11
)

(3,8)

4,
43

4,
41

4,
42

4,
40

Catalog R

(order, ipix)

(2,2)

(2,4)

(2,3)

(3,2) (3,3)

(3,1)

4,
19

4,
17

4,
18

4,
16

Catalog L

(3,17
)

(3,19
)

(3,18
)

(3,16
)

Efficient, parallel, joins
and crossmatching

coresFetch from disk or
object storage

Fetch from disk or
object storage

Use case #4: distributed analysis on data from two catalogs (example:
LSST and Euclid).

Clustering algorithms: Given a source catalog, a partition can be fetched
and a clustering algorithm run on it.

Clusters close to the center of the partition will be generally correctly
found. Clusters near the edges become more challenging – they
can be found by by more than one execution thread and
will need to be deduplicated/resolved (in general,
they won’t even be identical in membership –
distributed clustering is a hard problem).

Simple 1-pass clustering algorithms can be
made to work, and complex algorithms
can be implemented in two passes
where the 2nd pass only requires
O(~1%) of the data to exchange.

The use case here is creation of object
catalog from source catalogs via clustering
(of interest where no reference catalog exists or
cannot be utilized for whatever reason)

Clustering

(2,3)(2,3)

+

+

A source catalog

+++

++++++

+

+++++ +++++

++++++++++
+++++ ++++++++++

+++++

(2,2)+++++
+++++ +++++++++++

Analytics Tools

How do we expose these capabilities to the
user and enable science?

Any Tool that Understands Parquet can Read
HiPSCat

● Parquet underpins much of modern large-dataset analytics …
● … and HiPSCat is a valid, Hive-partitioned, Parquet dataset.

● We can immediately use existing tools.
● Spark, Dask, Ray, Pandas*, Hive, Hadoop, ….

● For all of these (except for Pandas) analysis execution is inherently
distributed, with an API that hides the complexity from the user.

● Still, we would like an ”astronomy-aware” layer…

LSDB: Python Analytics for HiPSCat

• LSDB: Large Survey Database

• Enable Pandas-like analysis on trillions of
observations with thousands of cores

• Build on existing tools: Dask (looking at Ray).
• Full HiPSCat awareness: spatial queries, cross-

matching, timeseries, multi-dataset joining.

• Very much in pre-alpha/prototype phase; expect
usable alphas in the next few weeks

Wyatt et al. (2023)
https://github.com/astronomy-commons/lsdb

img = gaia
.query(“pm > 10”)
.crossmatch(ztf)
.join(ztf_sources)
.for_each(varstar_classify)
.query(“pRRLy > 0.95”)
.skymap()

hp.mollview(img)

LSDB target APIs: The API center science. Multi-
processing, autoscaling, fail-over, etc. are all

implicit. Good user experience.

https://github.com/astronomy-commons/lsdb

Quick Demo
(see it in full on YouTube at https://dirac.us/opj)

https://dirac.us/opj

(see it in full on YouTube at https://dirac.us/opj)

https://dirac.us/opj

Status

● Ad-hoc collaboration of scientists/engineers from LINCC, Rubin, MAST, IRSA,
HESARC, LINeA (Brazil). JOIN US!

● Still heavily prototyping (the format isn’t yet static)
● Expecting to stabilize the format a bit by ~June.
● Building tools in parallel (dataset import, end-user analytics)

● Will convert a large number of datasets, run science user tests.
● Gather feedback, iterate until we have a solid solution.

● Draft for winter Interop (?)

40

Mailing list: https://groups.google.com/g/hipscat-wg
Repositories: https://github.com/astronomy-commons
Meetings: 10am PT, June 2nd (then every other wk)

https://groups.google.com/g/hipscat-wg
https://github.com/astronomy-commons

Much work remains
● Format

○ Better integrate with VO standards

○ Supporting variable neighbor
margins (for cross-matching)?

○ Supporting efficient joins on tables
of moving objects?

○ Temporal partitioning?

○ Supporting spectra?

○ Future transaction support?

● Tooling
○ Core HiPSCat libraries

○ Developing LSDB

○ Spark on HiPSCat

○ Rust, Java, C/C++ libraries

○ …

● Science
○ Importing a variety of catalogs

○ Science case tests

○ Deploy, collect user feedback

○ …Mailing list: https://groups.google.com/g/hipscat-wg
Repositories: https://github.com/astronomy-commons
Meetings: 10am PT, June 2nd (then every other week)

https://groups.google.com/g/hipscat-wg
https://github.com/astronomy-commons

Thank You !
Contact: mjuric@uw.edu

Collaboratively advancing data-intensive
astronomy.

A Universe Understood Through
Data-Intensive Discovery

mailto:mjuric@uw.edu

Backups

(2,4)

(3,2)

(3,1)

(4,1
9)

(4,1
7)

(4,1
6)

(2,2)

(2,4)

(3,2)

(3,1)

(4,17)

(4,19)

(4,16)

A “padding” or “overlap” or “neighbor margin” or “neighbor
cache”. A copy of the rows whose (ra, dec) fall into this area will be
kept with this partition. This enables distributed, shuffle-free, joins
and crossmatches of catalogs where (ra, dec) of same
objects/sources match only approximately (any catalog with
observational errors).

(2,3)(2,3)

Objects (rows) for
whom this partition is

primary storage.
The margin width

should be on the order
of ~few times the

uncertainty in (ra, dec)
of the rows in the

catalogs, or, close to the
radius at which shuffle-

free cross-matches
should be supported.

For a typical optical large dataset this may be on order of ~10arcsec.
Assuming a (very) conservative medium partition size of ~0.46deg

(1650 arcsec), the extra storage overhead is roughly ~2.4%.

Enabling efficient
distributed joins: Padding

Margins
(significantly
oversized for
visual clarity)

Crossmatching algo: Fetch the coordinate data from both partitions. Make sure to also
download the padding of the partition to the right. For each row on the left, find nearest
neighbor(s) in the table to the right. In some cases, the NN can be right across the partition
boundary, and thanks to the padding, it will be found.

(2,3)

How distributed
crossmatching works

(2,3)(2,3)

+

+ o
+ o

oCatalog L Catalog R

SELECT … FROM L
CROSSMATCH R

This allows for correct, parallel, N-nearest neighbor cross-matches, within a
radius r, where r < width of the padding margin.

Joining on co-partitioned columns just works(™). Co-partitioned columns are columns for
whose values it’s guaranteed they will all be in the same partitions (plus margins) on the
left and right side of the join. For such columns, a global ”SELECT … FROM L JOIN R ON L.foo
= R.foo” type query can be executed on a per-partition basis.

(2,3)

How distributed joins
work

(2,3)(2,3)

+

+ o
+ o

oCatalog L Catalog R

SELECT … FROM L
JOIN R on L.foo = R.bar

This allows for correct, parallel, joins. Typical examples: a) a join between an object
and a source catalog, on object ID; b) a 1:1 join of a catalog and a 3rd-party
produced catalog of added-value columns (e.g., object classifications).

