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To collaboratively develop open computing systems 
and algorithms needed for large-survey analyses.

• Data analysis infrastructure (this talk)
• Solar System exploration
• Time domain science
• Extragalactic astronomy

Two LINCC-FW hubs:
• Carnegie Mellon University
• University of Washington

The LINCC Frameworks Project

The Legacy Survey of Space and Time
Deep synoptic optical survey, coming in 2025.

Repeated imaging of the visible sky to ~24th mag.
10 years of operation.
60 PB of raw data.
40 billion stars, galaxies, asteroids.
30 trillion observations.

LSST Interdisciplinary Network For Collaboration And Computing



Rubin Observatory, March 15, 2023.
Cerro Pachon, Chile





Rubin Observatory, Telescope Mount Assembly
Ran full night of ”observing” (a week ago)



Rubin Camera (October 31, 2022, SLAC)
Being shipped to Chile in ~October 2023.



One of the major things the community 
will want to do with Rubin is

whole dataset science.



Scale of the problem

Rubin Year #1 dataset:
• 10Bn objects
• 100 obsv/object == 1T observations
• 100 bytes/obsv == 100 TB

Not just a Rubin Problem:
• Gaia, DES, ZTF, WISE, PS, Euclid, Rubin, Roman, SphereX, …
• Each one of these is Bn+ objects (w. many more measurements)



Fellow Travelers on the Quest

Sam Wyatt (Product Owner), Sean McGuire, Melissa DeLucchi (Project Manager)
Max West, Doug Branton, Neven Caplar, Steven Stetzler, Jeremy Kubica

Vandana Desai (IPAC), Troy Raen (IPAC), Dave Shupe (IPAC), Brigitta Sipőcz (IPAC)
Gregory Dubois-Felsmann (IPAC & Rubin)
Colin Slater (DiRAC & Rubin)
Sharon Shen (STScI)
Susan Mullally (STScI)
Rick White (STScI)
Bernie Shiao (STScI)
Travis Berger (STScI)
Erik Tollerud (STScI)
Josh Peek (STScI)
Tess Jaffe (HESARC)

+ YOU (join the party!)



Large-dataset Analytics: Partitioned Files

● Relational databases are not ideal 
for this type of work. Poor UX, 
too many bottlenecks.

● Industry state of-the-art is to use
distributed analytics tools
operating on files.

● Distributed computation achieved 
through partitioning.
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How to partition? Historically, we haven’t generally given 
this much thought…
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There’s value in thinking this through, and 
standardizing

• Users know what to expect and how to handle the dataset
• High quality, shared, analytics tools can be written
• Multi-dataset analytics can supported
• Pre-staging/ETL may be avoided

• Bulk export files == bulk analytics files
• Easier to generate and support for providers
• Can share code and infrastructure (e.g. mirroring, caching)

Think of all the wonderful tools and ecosystems that sprung up around HiPS!



Imagine a dataset with approximately 
1,811,709,771 sources…

… how could we store it?



Gaia DR3
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The 1.8Bn sources 
released in Gaia DR3

A single ASCII file would 
be about ~680GB in size, 
(gzip compressed).



1. Partitioning: HEALPix
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Partition the sky into NSIDE=1 (order=0)
HEALPix tiles, map tiles to files.

Example:

Norder0-Npix0.tsv.gz
Norder0-Npix1.tsv.gz
Norder0-Npix2.tsv.gz
Norder0-Npix3.tsv.gz
Norder0-Npix4.tsv.gz
Norder0-Npix5.tsv.gz
Norder0-Npix6.tsv.gz
Norder0-Npix7.tsv.gz
Norder0-Npix8.tsv.gz
Norder0-Npix9.tsv.gz
Norder0-Npix10.tsv.gz
Norder0-Npix11.tsv.gz



Problem: Severely unbalanced file sizes
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Pixel 4 (Galactic pole) ~ 20GB
Pixel 10 (Galactic center) ~ 400GB.

Simple file-based parallelization 
fails.

Example

Norder0-Npix0.tsv.gz
Norder0-Npix1.tsv.gz
Norder0-Npix2.tsv.gz
Norder0-Npix3.tsv.gz
Norder0-Npix4.tsv.gz
Norder0-Npix5.tsv.gz
Norder0-Npix6.tsv.gz
Norder0-Npix7.tsv.gz
Norder0-Npix8.tsv.gz
Norder0-Npix9.tsv.gz
Norder0-Npix10.tsv.gz
Norder0-Npix11.tsv.gz

1 min

20 min

Npix4

Npix10



Solution: Partition Hierarchically
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If too many sources fall into a pixel, 
split it into four higher order pixels.

Example

Norder0-Npix0.tsv.gz
…
Norder0-Npix7.tsv.gz
…
Norder0-Npix11.tsv.gz



1. Partition Hierarchically
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If too many sources fall into a pixel, 
split it into four higher order pixels.

Example

Norder0-Npix0.tsv.gz
…
Norder1-Npix28.tsv.gz
Norder1-Npix29.tsv.gz
Norder1-Npix30.tsv.gz
Norder1-Npix31.tsv.gz
…
Norder0-Npix11.tsv.gz



1. Partition Hierarchically

19

If too many sources fall into a pixel, 
split it into four higher order pixels.

Repeat.

Example

Norder0-Npix0.tsv.gz
…
Norder1-Npix28.tsv.gz
Norder1-Npix29.tsv.gz
Norder1-Npix30.tsv.gz
Norder1-Npix31.tsv.gz
…
Norder0-Npix11.tsv.gz



1. Partition Hierarchically
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If too many sources fall into a pixel, 
split it into four higher order pixels.

Repeat.

Example

Norder0-Npix0.tsv.gz
…
Norder1-Npix28.tsv.gz
Norder1-Npix29.tsv.gz
Norder1-Npix30.tsv.gz
Norder2-Npix112.tsv.gz
Norder2-Npix113.tsv.gz
Norder2-Npix114.tsv.gz
Norder2-Npix115.tsv.gz
…
Norder0-Npix11.tsv.gz



1. Partition Hierarchically
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If too many sources fall into a pixel, 
split it into four higher order pixels.

Repeat until each file size
is beneath some
pre-defined threshold.

Figure: an overlay of 
Gaia counts and the 
partitioning map, taking 
MAXOBJECTS=1e6

order:
3993 partitions for Gaia DR3, with 1M 

object/partition threshold



2. On-disk organization
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Holding everything in a single
directory is unwieldy (at best).

A directory structure encoding 
the hierarchy would be helpful.

Norder0-Npix0.tsv.gz
…
Norder1-Npix28.tsv.gz
Norder1-Npix29.tsv.gz
Norder1-Npix30.tsv.gz
Norder2-Npix112.tsv.gz
Norder2-Npix113.tsv.gz
Norder2-Npix114.tsv.gz
Norder2-Npix115.tsv.gz
…
Norder0-Npix11.tsv.gz



2. On-disk organization: HiPS-like Directories
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Fortunately, we have a 
precedent in VO on how to 
organize hierarchically 
partitioned HEALPix data: HiPS.

Norder0/Dir0/Npix0.tsv.gz
…
Norder1/Dir0/Npix28.tsv.gz
Norder1/Dir0/Npix29.tsv.gz
Norder1/Dir0/Npix30.tsv.gz
Norder2/Dir0/Npix112.tsv.gz
Norder2/Dir0/Npix113.tsv.gz
Norder2/Dir0/Npix114.tsv.gz
Norder2/Dir0/Npix115.tsv.gz
…
Norder0/Dir0/Npix11.tsv.gz



Note: Hierarchical Progressive Surveys
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While we use a HiPS-like 
directory structure, we only 
store data at the leaf nodes.

I.e., there are no lower-
resolution files at lower orders.

Norder0/Dir0/Npix0.tsv.gz
…
Norder1/Dir0/Npix28.tsv.gz
Norder1/Dir0/Npix29.tsv.gz
Norder1/Dir0/Npix30.tsv.gz
Norder2/Dir0/Npix112.tsv.gz
Norder2/Dir0/Npix113.tsv.gz
Norder2/Dir0/Npix114.tsv.gz
Norder2/Dir0/Npix115.tsv.gz
…
Norder0/Dir0/Npix11.tsv.gz

e.g., there’s no Norder1/Dir0/Npix31.csv



Note: Hierarchical Progressive Surveys
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Norder0/Dir0/Npix0.tsv.gz
…
Norder1/Dir0/Npix28.tsv.gz
Norder1/Dir0/Npix29.tsv.gz
Norder1/Dir0/Npix30.tsv.gz
Norder2/Dir0/Npix112.tsv.gz
Norder2/Dir0/Npix113.tsv.gz
Norder2/Dir0/Npix114.tsv.gz
Norder2/Dir0/Npix115.tsv.gz
…
Norder0/Dir0/Npix11.tsv.gz HiPSCat → MOCHA? (e.g. Multi-order Catalogs in HEALpix for 

Astronomy? Bacronym suggestions welcome!)

While we use a HiPS-like 
directory structure, we only 
store data at the leaf nodes.

I.e., there are no lower-
resolution files at lower orders.

This is really a MOC
(multi-order coverage map; https://ivoa.net/documents/MOC/)

https://ivoa.net/documents/MOC/


3. Serialization
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TSV is not ideal for large catalog 
storage and analytics.

Time-consuming to parse and 
(de)compress. Also not seekable.

FITS? HDF5?

Norder0/Dir0/Npix0.tsv.gz
…
Norder1/Dir0/Npix28.tsv.gz
Norder1/Dir0/Npix29.tsv.gz
Norder1/Dir0/Npix30.tsv.gz
Norder2/Dir0/Npix112.tsv.gz
Norder2/Dir0/Npix113.tsv.gz
Norder2/Dir0/Npix114.tsv.gz
Norder2/Dir0/Npix115.tsv.gz
…
Norder0/Dir0/Npix11.tsv.gz



3. Serialization: Parquet
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TSV is not ideal for large catalog 
storage and analytics.

We use Parquet.

Key features:
ü Designed for storage of large tables
ü Columnar
ü Efficient (binary)
ü Transparent compression
ü Data Integrity (checksums)
ü Partitioning
ü Broad multi-language support
ü Broad tool support
ü Strong industry backing
ü Open source



3. Serialization: Parquet
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Parquet readers natively support
reading partitioned datasets if 
they’re stored in directories following 
<key>=<value> naming format.

We make that small tweak…

Norder=0/Dir=0/Npix=0/catalog.parquet
…
Norder=1/Dir=0/Npix=28/catalog.parquet
Norder=1/Dir=0/Npix=29/catalog.parquet
Norder=1/Dir=0/Npix=30/catalog.parquet
Norder=2/Dir=0/Npix=112/catalog.parquet
Norder=2/Dir=0/Npix=113/catalog.parquet
Norder=2/Dir=0/Npix=114/catalog.parquet
Norder=2/Dir=0/Npix=115/catalog.parquet
…
Norder=0/Dir=0/Npix=11/catalog.parquet



All together: HiPSCat*
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Gaia DR2 Catalog Counts (log scale) Visualization of file storage (color = healpix level)
3933 partitions of similar size (128-256 MB)

Inspired by the widely used IVOA HiPS standard. Standing on the shoulders 
of giants (Pierre, Mark, Thomas et al; REC-HIPS-1.0-20170519).

Layout on “disk”:

👇

(*) We may need to change the name to avoid 
confusion with true HiPS catalogs



What can we do with this?



Download spatial subsets of a catalog

order = 7
pixel size size = 0.46deg

order = 2
pixel size size = 14.7deg

Given a region of the sky, it’s straightforward to find which 
partitions cover the region (and 

download those files)

Use case #1: downloading 
overlapping subsets of large 
catalogs.

Use case #2: efficiently
download a subset of columns.

Parquet’s columnar layout
enables downloading only the

columns of interest



Straightforward Parallel Whole-Catalog Computation

Enables very simple parallel computation schemes: 
per-file parallelization.

Use case #3: complex searches, feature 
computation, spatial processing (clustering)

Cloud-compatible: partitions can be stored on object store 
(S3, GCS, etc.) providing tremendous bandwidths.
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Efficient, parallel, joins
and crossmatching

coresFetch from disk or 
object storage

Fetch from disk or 
object storage

Use case #4: distributed analysis on data from two catalogs (example: 
LSST and Euclid).



Clustering algorithms: Given a source catalog, a partition can be fetched 
and a clustering algorithm run on it.

Clusters close to the center of the partition will be generally correctly 
found. Clusters near the edges become more challenging – they
can be found by by more than one execution thread and
will need to be deduplicated/resolved (in general,
they won’t even be identical in membership –
distributed clustering is a hard problem).

Simple 1-pass clustering algorithms can be 
made to work, and complex algorithms
can be implemented in two passes
where the 2nd pass only requires
O(~1%) of the data to exchange.

The use case here is creation of object
catalog from source catalogs via clustering
(of interest where no reference catalog exists or
cannot be utilized for whatever reason)

Clustering

(2,3)(2,3)

+

+

A source catalog

+++

++++++

+

+++++ +++++

++++++++++
+++++ ++++++++++

+++++

(2,2)+++++
+++++ +++++++++++



Analytics Tools 

How do we expose these capabilities to the 
user and enable science?



Any Tool that Understands Parquet can Read 
HiPSCat

● Parquet underpins much of modern large-dataset analytics …
● … and HiPSCat is a valid, Hive-partitioned, Parquet dataset.

● We can immediately use existing tools.
● Spark, Dask, Ray, Pandas*, Hive, Hadoop, ….

● For all of these (except for Pandas) analysis execution is inherently 
distributed, with an API that hides the complexity from the user. 

● Still, we would like an ”astronomy-aware” layer…



LSDB: Python Analytics for HiPSCat

• LSDB: Large Survey Database

• Enable Pandas-like analysis on trillions of 
observations with thousands of cores

• Build on existing tools: Dask (looking at Ray).
• Full HiPSCat awareness: spatial queries, cross-

matching, timeseries, multi-dataset joining.

• Very much in pre-alpha/prototype phase; expect 
usable alphas in the next few weeks

Wyatt et al. (2023)
https://github.com/astronomy-commons/lsdb

img = gaia
.query(“pm > 10”)
.crossmatch(ztf)
.join(ztf_sources)
.for_each(varstar_classify)
.query(“pRRLy > 0.95”)
.skymap()

hp.mollview(img)

LSDB target APIs: The API center science. Multi-
processing, autoscaling, fail-over, etc. are all 

implicit. Good user experience.

https://github.com/astronomy-commons/lsdb


Quick Demo
( see it in full on YouTube at https://dirac.us/opj )

https://dirac.us/opj


( see it in full on YouTube at https://dirac.us/opj )

https://dirac.us/opj


Status

● Ad-hoc collaboration of scientists/engineers from LINCC, Rubin, MAST, IRSA, 
HESARC, LINeA (Brazil). JOIN US!

● Still heavily prototyping (the format isn’t yet static)
● Expecting to stabilize the format a bit by ~June.
● Building tools in parallel (dataset import, end-user analytics)

● Will convert a large number of datasets, run science user tests.
● Gather feedback, iterate until we have a solid solution.

● Draft for winter Interop (?)
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Mailing list: https://groups.google.com/g/hipscat-wg
Repositories: https://github.com/astronomy-commons
Meetings:         10am PT, June 2nd (then every other wk)

https://groups.google.com/g/hipscat-wg
https://github.com/astronomy-commons


Much work remains
● Format

○ Better integrate with VO standards

○ Supporting variable neighbor 
margins (for cross-matching)?

○ Supporting efficient joins on tables
of moving objects?

○ Temporal partitioning?

○ Supporting spectra?

○ Future transaction support?

● Tooling
○ Core HiPSCat libraries

○ Developing LSDB

○ Spark on HiPSCat

○ Rust, Java, C/C++ libraries

○ …

● Science
○ Importing a variety of catalogs

○ Science case tests

○ Deploy, collect user feedback

○ …Mailing list:       https://groups.google.com/g/hipscat-wg
Repositories:   https://github.com/astronomy-commons
Meetings:         10am PT, June 2nd (then every other week)

https://groups.google.com/g/hipscat-wg
https://github.com/astronomy-commons


Thank You !
Contact: mjuric@uw.edu

Collaboratively advancing data-intensive 
astronomy.

A Universe Understood Through
Data-Intensive Discovery

mailto:mjuric@uw.edu


Backups
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(4,17)
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(4,16)

A “padding” or “overlap” or “neighbor margin” or “neighbor 
cache”. A copy of the rows whose (ra, dec) fall into this area will be 
kept with this partition. This enables distributed, shuffle-free, joins 
and crossmatches of catalogs where (ra, dec) of same 
objects/sources match only approximately (any catalog with 
observational errors).

(2,3)(2,3)

Objects (rows) for 
whom this partition is 

primary storage.
The margin width 

should be on the order 
of ~few times the 

uncertainty in (ra, dec)
of the rows in the 

catalogs, or, close to the 
radius at which shuffle-

free cross-matches 
should be supported. 

For a typical optical large dataset this may be on order of ~10arcsec. 
Assuming a (very) conservative medium partition size of ~0.46deg 

(1650 arcsec), the extra storage overhead is roughly ~2.4%.

Enabling efficient 
distributed joins: Padding

Margins 
(significantly
oversized for 
visual clarity)



Crossmatching algo: Fetch the coordinate data from both partitions. Make sure to also 
download the padding of the partition to the right. For each row on the left, find nearest 
neighbor(s) in the table to the right. In some cases, the NN can be right across the partition 
boundary, and thanks to the padding, it will be found.

(2,3)

How distributed 
crossmatching works

(2,3)(2,3)

+

+ o
+ o

oCatalog L Catalog R

SELECT … FROM L
CROSSMATCH R

This allows for correct, parallel, N-nearest neighbor cross-matches, within a 
radius r, where r < width of the padding margin.



Joining on co-partitioned columns just works(™). Co-partitioned columns are columns for 
whose values it’s guaranteed they will all be in the same partitions (plus margins) on the 
left and right side of the join. For such columns, a global ”SELECT … FROM L JOIN R ON L.foo
= R.foo” type query can be executed on a per-partition basis.

(2,3)

How distributed joins 
work

(2,3)(2,3)

+

+ o
+ o

oCatalog L Catalog R

SELECT … FROM L
JOIN R on L.foo = R.bar

This allows for correct, parallel, joins. Typical examples: a) a join between an object 
and a source catalog, on object ID; b) a 1:1 join of a catalog and a 3rd-party 
produced catalog of added-value columns (e.g., object classifications).


