
Data Central: current status and future plans

James Tocknell (on behalf on the Data Central team)

LOC has RED on the name badges

Ask them about Data Central during the breaks

What is Data Central — Not Just an Archive!

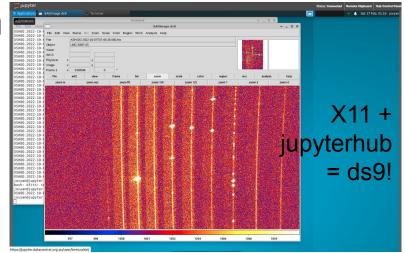
- Central science platform for astronomy research teams to collaborate
 - Survey planning/management tools (target-selector and observation-log webapps)
 - Large servers for running reduction pipelines/post-processing of results
 - Team data stores and collaboration tools
- Hosts Australia's optical survey data, plus other data that lacks a home
 - Accessible via Web Portal, VO, custom APIs and Jupyterhub (code to the data)
- Creates reusable-but-bespoke applications for astronomers
 - Data Aggregation Service and 4HS Optical Data Inspector
 - Astronomer-friendly wrappers around databases, including ongoing maintenance
 - Tools to compare theory with observation
 - Provides ADACS Software Support (proposal-base support system)
- Applies astronomy tools and knowledge to other fields
 - Archaeology, biology, early childhood education and more

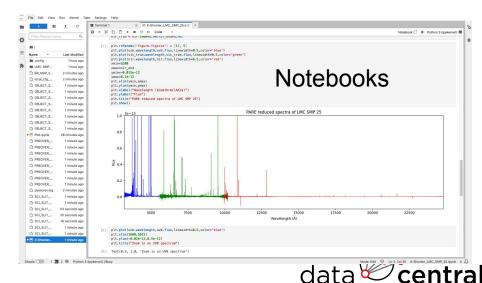
What Data Central hosts

- Host of Australian optical data and as backstop for data that lacks a home
 - Previously no central place for optical data
 - CASDA (see talk by Minh Huynh) is funded to support archives and surveys for CSIRO-managed facilities, but this only covers some of Australia's radio data
 - The MWA archive (see talk by Mouriyan Rajendran) does not have capacity to host survey-team science products (e.g. GLEAM, GLEAM-X)
- Hosts publicly 19 surveys with 26 data releases, with additional not-yet-public surveys and data releases in various stages of readiness
 - Primarily Australian data, but also mirrors of large object catalogues like 2MASS and WISE to enable effective crossmatching
 - Public data volumes are dwarfed by the amount of internal or in-prep data we are hosting for teams

Our current VO services

- SCS: Oldest of our VO services (pure python + django)
 - Previously was somewhat bespoke using djangorestframework with PrestoDB being the backend; now wraps our containerised TAP service, and provides more details in the VOTable (e.g. the underlying query run)
- SIA (v2) + datalink cutouts (pure python + django)
 - Most of our optical data from survey teams is given as large swarps, so we do cutouts rather than serving out the whole swarp
- SSA + datalink for original and "simple 1D fits" spectra (pure python + django)
 - Survey teams provide spectra in various formats, we serve out both the original files as well as simple 1D fits files for quick-look purposes in splat (or similar tool), and provide specutils loaders for the original files
- TAP: Uses the excellent vollt codebase by Grégory Mantelet with a PostgresSQL cluster as the database
 - Citus is the PostgreSQL cluster tool we use for increased performance

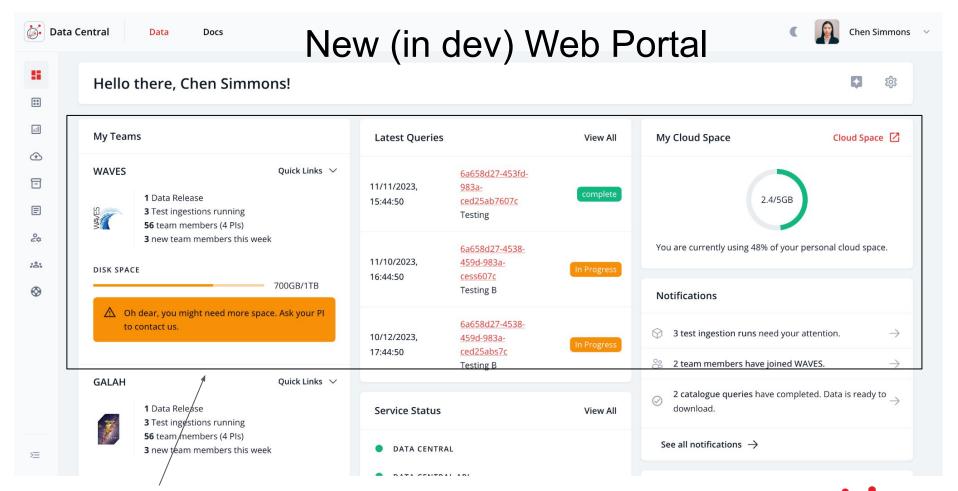

New, In development and future VO services


- SSA for Integral Field Spectra (IFS)
 - Our current SSA implementation was designed around 1D spectra
 - We have implemented a new SSA service (which reuses parts of our existing service) which is designed to work with IFS products
- "Simple Data Access"/datalink for other products
 - We're also going to be hosting data products which are the outputs of post-processing (best fits, models, plots etc. that are in either jpg/png or bespoke formats), and these need to be queryable also
- Datalink all the things!
 - Each of our current datalink services do not link to the other services, introducing crosslinks between them would allow for finding more related data

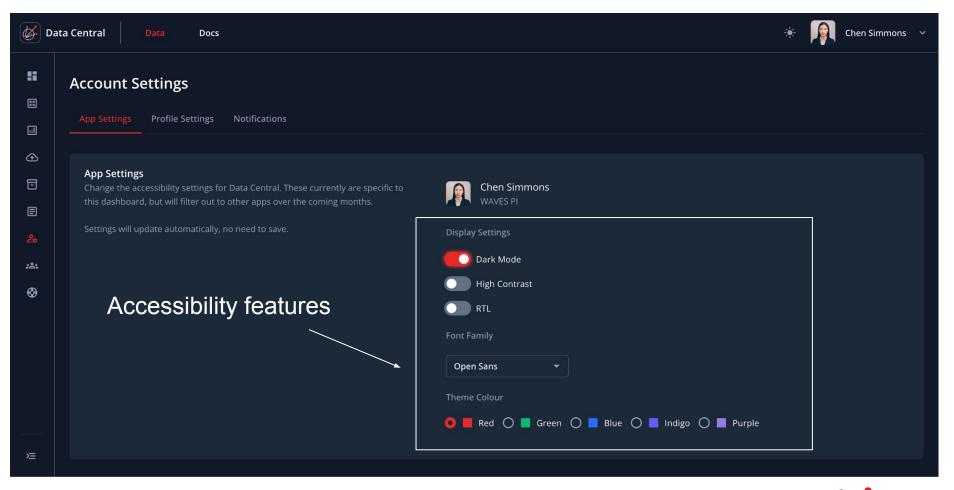
Data Central: Science Platform

- Providing compute + data for both individuals and teams
 - Built on k3s, with Ceph and Proxmox coming in to replace legacy systems
- Jupyterhub: code to all the data!
 - Direct access to all public data, plus (in dev) private data releases and personal and team spaces via custom FUSE file system
 - Specific images for targeted reduction environments for ESO and the AAT
- VMs/dedicated hardware for large scale reduction for ESO large programmes
 - Accessible via VPN or via browser (using Apache Guacamole)
 - We may look at providing LXC containers to allow for a more "unix-server-like" setup

Data Central: Science Platform


- Large scale data upload/download/sync
 - WebDAV (OwnCloud/NextCloud)
 - RSync (+ ContainerSSH in the future)
 - Possibly replace/complement WebDAV with VOSpace, given WebDAV's issues with large file trees?
- Infrastructure for SSO/access control and team management
 - Spin up new instances of services via containers, enabling us to port in team-specific services/tools that need a new home (e.g. GLEAM-X R-shiny team tool, Smart Pulsar database/data viewer)
- DCvalidate: saving time for survey teams and our engineers!
 - Scalable solution to validating survey team data and metadata for ingestion to VO+web portal backend

Reusable-but-Bespoke Science Applications


- Data Aggregation Service (DAS) developed for CRAFT (Fast Radio Bursts)
 - Builds on VO services with a more efficient and scalable async client architecture
 - Made general purpose for any transient research, and tech stack informed many of the other apps we've built
- Hector: IFU-based galaxy survey using on AAT
 - Target selector app built on Aladin-lite to validate input catalogues
 - Galaxy Morphology app built from components of target selector app
 - Observations log app to track details of how survey is progressing (e.g. does a field need to be re-observed)
- 4HS: 4MOST survey that is using reprocessed VISTA data for input catalogue
 - Optical Data Inspector for target selection built on Aladin-lite+hipsgen+mocpy
- Tools to compare theory with observations
 - Simspin: generate mock galaxy observations
 - CosmoDragon: generate synthetic radio jet emission maps

Integrate all services in one portal

WL+BES

Tech Stack and tools

- Python, mostly django (and djangorestframework), but with some use of starlette for async/web-socket usage, and celery for worker jobs
- JS/TS with react for frontend (new web portal will use next.js)
- PostgresSQL as database (though some apps use MySQL/MariaDB, MongoDB or InfluxDB as needed)
- Apereo CAS + Active Directory for users/groups
- Team Collaboration tools: Wikis (Wiki.js), Mailing Lists (mailman), Collaborative Document Editors (OwnCloud/NextCloud+OnlyOffice)
- Deploying either through docker-compose or k8s (using k3s as k8s distro)
- Debian-based Linux Distros (traditionally Ubuntu, moving away due to issues with snaps)
- On-Prem hardware (mostly supermicro servers and disc arrays, moving to Ceph for scalable storage and Proxmox for VMs)
 - Cloud in AU is either the most expensive region (or second most, depending on the product), not including exchange rate

