A **Python** package for gamma-ray astronomy

Atreyee Sinha IPARCOS/UCM, Madrid asinha@ucm.es

For the Gammapy-dev team

Fermi-LAT collaboration meeting, March 2024

A short introduction to VHE gamma-ray detection techniques

effective area ≈ size of light pool (small array)

Hadronic showers

Detection techniques

	IACT	WCD
Туре	Pointing	All Sky
Energy threshold	~100 GeV	TeV
Energy resolution	~10%	40%
Angular Resolution	~0.1 deg	~0.5 deg
FoV	~5 deg	~ 90 deg
Duty Cycle	10%	~100%
Current instruments	H.E.S.S. , VERITAS, MAGIC, FACT	HAWC
Future Instruments	CTA	SWGO

Challenge: Atmosphere and Observation Condition

- * Instrument response changes with
 - * Gamma-ray energy
 - * **Position** in Camera Field of View
 - Zenith Angle of observation (atmospheric thickness)
 - * **Azimuth**: Earth's magnetic field orientation
 - * Telescopes triggered
 - Subarray choice

* ...

- * Atmospheric Density profile
- * Optical Night-Sky-Background light level (Moon, Zodiacal light, Light pollution)
- Detector Configuration

Challenge: Atmosphere and Observation Condition

- * Instrument response changes with
 - * Gamma-ray energy
 - * **Position** in Camera Field of View
 - * Zenith Angle of observation (atmospheric thickness)
 - * Azimuth: Earth's magnetic field orientation
 - Telescopes triggered
 - * Subarray choice
 - * Atmospheric Density profile
 - * Optical Night-Sky-Background light level (Moon, Zodiacal light, Light pollution)
 - Detector Configuration
 - * ...

- Potentially very high dimensional Instrument Response Functions
- Lots of custom simulations

• Need good parametrisation and data model

Challenge: Strong residual hadronic background

- 10⁴ hadronic triggers for 1 photon trigger
- ~98-99% rejected by present gamma-hadron separation techniques
- Still residual background is ~100 times of signal strength
 - "90-99% of gamma-like particles are actually hadrons"

• Each telescope has its own data format and software

- Multiple analysis chains within each collaboration
- Cross checking analysis is a neverending issue

 Combination of data from different experiments needs hacking into proprietary analysis s/w - terrible experience

Proprietary approaches

All VHE gamma-ray instruments have their own proprietary formats and tools making joint analyses impossible

How to compare:

- instrument-based assumptions on physical spectrum?
- inter-instrument systematics effects?
- treatment of low statistics?

- ► CTA will operate as **open** observatory
- Public legacy data release of current instruments
- Multi-instrument analysis necessary
- •VHE analysis needs common open data formats and common open tools

Towards open VHE data analysis

All VHE gamma-ray instruments have their own proprietary formats and tools making joint analyses impossible

- inter-instrument systematics effects?
- treatment of low statistics?

GammaAstroData formats & Gammapy

- Gamma Astro Data Formats (GADF)
- * Based on the Fermi-LAT format Proposed in 2016
- * Adopted by CTA
- * H.E.S.S. DL3 DR1
- MAGIC data release

The Gammapy concept

Science tools for the CTA

A high level gamma-ray astronomy package based on common data formats

A flexible, open source, community driven python library

Dependencies

Optional dependencies: bring in useful functionality

Pydantic

Configuration

PyYAML YAML I/O

matpl tlib

Plotting, visualisation

\$ click Command line tools

Optional dependencies Required dependencies

Optimisation, sampling

healpix maps

Tutorial notebooks

JumPy

1

Interpolation, minimisation, FFT convolution, etc. Gammapy - A.Donath - Scipy 2023

ND-data structures and computations

Internal workflow DL3 γ -like events

- * 2 step workflow
 - Data reduction (DL3 - DL4)
 - Modelling and fitting (DL4 -DL5)

PSF EnergyDispersion EffectiveArea

DataStore Observations Observation GTI

Data Reduction

MapDatasetMaker SafeMaskMaker FoVBackgroundMaker RingBackgroundMaker etc.

YAML

Binned data

WcsNDMap HpxNDMap etc.

MapDatasetOnOff etc.

Modeling & Fitting

Fit, Models, SkyModel FoVBackgroundModel etc.

FluxPointsEstimator TSMapEstimator etc.

Name	Flux	Size
SNR	1e-12	1 de
PWN	1e-11	0.2 de
GRB	1e-10	0 de

Datasets MapDataset

EVENT_ID	TIME	
	s	
int64	float64	
5407363825684	123890826.66805482	
5407363825695	123890826.69749284	
5407363825831	123890827.23673964	
5407363825970	123890827.79615426	
5407363826067	123890828.26131463	
5407363826095	123890828.41393518	
5407363826128	123890828.52555823	
5407363826168	123890828.6829524	
5407363826383	123890829.53362775	

Data fitting DL4 ----- DL5

- Fitting on pre-computed datasets
 - eg: From HAWC, Fermi-LAT, OGIP files, etc
- Forward folding with maximum likelihood estimation

$$N_{Pred}(p, E) = N_{bkg}(p, E) + \Sigma_{src}N_{src}(p, E)$$

Cash: known background $TS = -2 \log L = 2\Sigma (N * \log N_{pred} - N_{pred})$

Wstat: counts with measured background

Joint likelihood

- Simultaneous fitting of various (
- Likelihood evaluated per dataset, individual likelihoods combined to get global likelihood

Lon

True Energy

Flux

- May come from the same or different instruments
- Possible to combine DL4 and DL5 data

End products: DL5 and DL6

- DL5: Flux points, light curves and flux/TS maps
- Possible to fit DL5 data
 - Eg: published flux points, lightcurves
 - Chi2 statistics used
- DL6: catalogs
 - Support provide for common catalogs: Fermi 4FGL, H.E.S.S.₃₀
 galactic plane survey, HAWC catalog, etc
 - Create your own catalogs...

Introducing VODF

THE THE

The Very High Energy Data Format

Bruno Khélifi, Karl Kosack, Laura Olivera-Nieto, Jutta Schnabel, Roberta Zanin

CTA-France Meeting

25 - 26 May 2023, Paris

VODF introduction, CTA-France meeting, 26/05/2023, Paris

What is it about: Data levels...

from Karl Kosack

VODF introduction, CTA-France meeting, 26/05/2023, Paris

Outline: from gamma rays to high energies particles

Some history: GADF

A (short History of GADF)

2011 Prototypes for the CTA data format and science tools

- 2016 Establishment of the Gamma-ray Astronomy Data Formats (GADF) initiative
 First preliminary release version (0.1), mainly focused on IACTs
- **2018** Version 0.2 released
 - Support implemented in the science tools Gammapy and ctools
 - H.E.S.S. releases ≈ 50 h of observations of different sources using the format
- 2019 FACT, Fermi-LAT, H.E.S.S. MAGIC and VERITAS observations of the Crab Nebula are used to perform the first multi-instrument analysis [doi:10.1051/0004-6361/201834938]

https://github.com/open-gamma-ray-astro/joint-crab

- ctools based analysis of the H.E.S.S. data release [doi:10.1051/0004-6361/201936010]
- Comparison of Gammapy and ctools using the H.E.S.S. data release [doi:10.1051/0004-6361/201936452]

VODF, an open initiative around 11 large facilities

Slewing

Neutrino

detectors

instruments

v-rav

ASTRI - Astronomia a Specchi a Technologica Replicante Italiana, (IACT telescope)

CTAO - Cherenkov Telescope Array Observatory (IACT observatory)

FACT - First APD Cherenkov Telescope (IACT telescope)

H.E.S.S. - High Energy Stereoscopic System (IACT Array)

MAGIC - Major Atmospheric Gamma-ray Imaging Cherenkov telescope (IACT array)

VERITAS - Very High Energy Radiation Telescope Array System (IACT array)

Pointing

telescopes

v-rav

Fermi-LAT - Large Area Telescope on the Fermi Space Telescope (High-energy Space Observatory)

HAWC -High-Energy Water Cherenkov telescope (WCT)

SWGO - Southern Wide-Field Gamma-Ray Observatory (WCT)

IceCube - Neutrino Observatory

KM3NeT - The Cubic Kilometre Neutrino Telescope (neutrino telescope)

VODF introduction, CTA-France meeting, 26/05/2023, Paris

VODF: new structure for new open science

VODF Steering committee

VODF Lead Editors (3)

Format development

Established in 2022

one representative per experiment, defining roadmap & goals

Conveners (2)

Organization & Coordination of work

> Documentation: https://vodf.readthedocs.io Source & Community: https://github.com/VODF/

VODF introduction, CTA-France meeting, 26/05/2023, Paris

Validation of standardized data formats and tools for ground-level particle-based gamma-ray observatories doi:10.1051/0004-6361/202243527

GADF @Gammapy

Models of Galactic Source Emissions with CTA and KM3NeT (in preparation)

Basic data format: "Events" and "service data" (DL3)

event = particle detection (gamma, neutrino)

Information derived from simulation: Instrument Response Functions (IRFs)

- Stable Time Interval
- Effective Area
- Energy Dispersion
- Point Spread Function
- Background
- Radius of On region for point-like IRFs

From CTA DL3 data model

Higher levels: Science results

DL4 (Science binned)

- exposure maps
- counts maps
- exclusion maps
- significance maps
- excess maps

Sky Maps

DL5/6 (Science products)

- Flux maps & fit models
 - data cube (3D,4D)
 - 2D sky map
 - light curve
 - spectrum
 - spatio-spectral cube
 - ...

Potential future developments with VODF

Source Catalogs

Name	Flux	Size
SNR	1e-12	1 deg
PWN	1e-11	0.2 deg
GRB	1e-10	0 deg

Flux Points

Next steps & open questions

- Starting with a format definition: the one of CTAO, strongly inspired by GADF
 - Allow for multiple IRFs
 - Including different event categories (event types)
 - Choose metadata standards
- Ensuring interoperability (especially with IVOA)
 - Make data discoverable via VO (ObsCore?)
 - Could contribute to an interest group if it happens
 - Current considerations (see contribution by Mathieu Servillat)
 - CTAO Data Model group & DM for High Energy astrophysics
 - Further workshop prepared for June 28/29 (French VO, extending WP4 ESCAPE)