MANGO **Model for ANnotating Generic Objects**

Laurent MICHEL, F. Bonnarel, G.Landais, M. Louys, M. Molinaro, J. Salgado

Thisday Dogworth Ping

MANGUIER ou MANGO.

MANGUIER ou MANGO.

MANGUIER ou MANGO.

Reading VOTables Quantity per Quantity

What Are Complex Quantities (or Property)

Quantities with more than one coordinates	 Position proper motion CCD position errors
Quantity with errors	• many
Quantity with specific coordinate systems	PhotometryMoving objects (space + time)
Quantity linked with other quantities	Photometry + time stampsPosition + quality flag
Correlated quantities	 Position + proper motion
Mix of all above cases	

The MANGO Project

The Concept

- A flexible model helping to interpret the content of (m)any data tables
- Make many things machine-readable
- A data model that is intended for use in conjunction with MIVOT to annotate
 DAL query responses

History

- Born after a poll to get **use-cases** for a **source data-model** (Paris 2019)
- Kept dormant while the pandemic, the DM workshop and the MIVOT process

Watchout

• MANGO is **not** a model describing any particular **science product**.

Design Guideline

Flexible enough to cover most of the use cases

- Applicable for legacy or mission data
- Coverage of various domains (HE, time domain...)

Simple Enough to be comfortable with the mapping

- Mapping easy to build
- Mapping easy to consume
- Object hierarchy as shallow as possible

Accurate enough to provide significant added value

- Domains not covered before
- Property association
- Data correlation

The Same Model for Different Datasets

The model describes

- Global meta data
- The quantity container
- Individual quantities
- Quantity associations

The model does not specify any pattern for the expected quantities.

Model Overview

The Data Origin (DCP IG)

Trace the dataset origin

- Article
- License
- Query
- Not the provenance

Some of this information is in <INFO>

• The model provides a structured view on it

TBD - TBC

• Merge with or reuse DatasetDm

Properties Supported by the Model

Interop - North Spring 2024 - Sydney

Property Semantic

Property role refined by semantic tags

- Vocabulary
- Free text description

Semantic block can relate to

- The property itself
- The property + the associated properties

Property	Description
PhotometricProperty	This is a V magnitude
Time	This is a time stamp
PhotometricProperty + Time	This is a photometric point in V band

Property Association

Association purpose

- Associating a property with a time makes it easier to interpret time-domain data.
- Associating a property with a quality flag makes it easier to filter data.

Status

Make status values machine-readable

- Query setup
- Value understandable by the client

Set of allowed values

• Allowed values come with their descriptions

Shape

String serialization of complex shapes

- Serialization mode (MOC, STC-S...) given by the **ShapeSerialization** enum
- Space coordinate systems imported from Coordinates data model

Support of Classes of the Measurement Model

Placeholder for classes of the

Measurements model

- Position
- Proper Motion
- Velocity
- Time
- Polarization
- Generic Measure

Structure of the Measure sub-classes

- A value (can be a vector)
- A coordinate system (frame + axis)
- An error

Great flexibility

- Accurate description of all axis
- Might be tricky to use due to the too many abstractions

Add a calibration level

• borrowed from Obscore

Photometry Properties

Flux/Magnitude

• A simple value with an error and a photometric calibration (imported from **PhotDM**)

Color

- A simple value with an error and 2 photometric filters (imported from **PhotDM**)
- Distinction between Color and HR made at model level (ColorDefinition)

TBD - TBC

• Should we make a distinction between Fluxes and Magnitudes at model level?

The Epoch Position Class

Interop - North Spring 2024 - Sydney

• Need for a validation by stakeholders

TBD - TBC

6

Cross-match Example

Error Package

Currently designed for the EpochPosition (GAIA) use-case

Main Features

- Confidence level (important for X-Match)
- Split by dimension (1D vs 2D)
- Distinction between covariance and correlation
- Derive from meas:Uncertainty to make them usable in the context of the physical properties

TBD - TBC

 Reuse more Measurement model concepts to extend PropertyError1D

Correlation Package

Currently designed for the EpochPosition (GAIA) use-case

Main Features

- Support both correlation and covariance
- Split by dimension patterns

TBD - TBC

- Must be validated by domain experts
- No use out of the EpochPosition case
- Can be simplified

Mapping the Whole Model ?

Data can be mapped as a complete MANGO instance

... or Not

Or as a bunch of elements as we are doing with the EpochPosition

• The parsing remain easy since any component is identified by its <code>@dmtype</code> and the <code>@dmrole</code> it plays in its context

Conclusions

Thanks to MIVOT and PyVO, the model can be exercised against real data.

 Data sample can be mapped on Mango by hand so that stakeholders can see whether the result match their expectations or not.

We need expert input

- Need expert advices to complete the **EpochPostion** class
- Need data provider input to validate the model as a whole
- Need expert in orbiting system: a missing MANGO feature
- Need input for any missing property (redshift, orbiting systems..)

https://github.com/ivoa-std/MANGO

backup

Some Open Issues ...

• Unit modeling

Position ra: realQuantity (value +**unit**) dec: realQuantity (value +**unit**)

 Easier to parse: no need to search units out of the attributes Not consistent: accept different units for quantities that must have the same
 More annoying to deal with: need to search units as an attribute Consistent: both quantities always share the same unit

• How to connect MANGO with IVOA vocabularies

- IVOA vocabulary (type of associated data)
- XType (shape serialization)
- Imported from other models (ObsCore calibration level)

A Important Clarification

- Why some elements present in the VOTable are duplicated in the model?
 - Property description
 - o unit

• Several (good) Reasons

- a. VOTable column descriptions are column related whereas MANGO description are quantity related
- b. If they are are missing in a particular VOTable, we want to be able to set them in the model mapping block.
- c. We want to be able to export self-consistent model instances
 - i. No longer dependencies with the VOTable context
 - ii. E.g. as JSON feeding a micro-service (see PyVO implementation)

Reading VOTables Column per Column

Interop - North Spring 2024 - Sydney