
VO-DML Extensions
Paul Harrison (JBO)
IVOA Interop Spring 2024

Introduction
VO-DML Tooling update introduced in previous Interop talks now quite mature.

Refined by the needs of ProposalDM, the generated code for which is
used as the serialisation basis for Polaris, a proposal submission toolkit.

Has already introduced some extensions to VO-DML that have not yet
been included in the standard document.

This talk

Updates on the VO-DML tooling (since Bologna)

Suggestions for VO-DML 1.1 WD

Thoughts on the modularity of existing DMs.

2

https://github.com/ivoa/vo-dml/
https://wiki.ivoa.net/twiki/bin/view/IVOA/InterOpNov2021DM
https://github.com/ivoa/ProposalDM
https://github.com/orppst

VO-DML Tooling Updates
Significant updates since a year ago (v0.3.19) when last
reported - now v0.5.1

Tools documentation

Improved generated model documentation

Contained references support in Java.

XML and JSON schema generation.

3

https://github.com/ivoa/vo-dml/blob/master/tools/ChangeLog.md

Tool Documentation
https://ivoa.github.io/vo-dml/

4

Model Site Documentation

individual pages for
each model
element

neighbourhood
diagram

uses mkdocs

5

e.g. ProposalDM

https://squidfunk.github.io/mkdocs-material/
https://ivoa.github.io/ProposalDM/

VO-DML 1.1 WD
Backwards compatible extensions (as required)

already tested in deployed tools plugin

Managed via GitHub milestones with PR for each feature

Main update for 1.1 on the 20-update-vo-dml-standard-
document branch

Original 1.0 REC was written in Word - the 1.1 WD is in
markdown (via an automated conversion with pandoc)

might even produce yet another publishing option via pandoc

6

https://github.com/ivoa/vo-dml/milestones
https://github.com/ivoa/vo-dml/tree/20-update-vo-dml-standard-document/doc/std
https://github.com/ivoa/vo-dml/tree/20-update-vo-dml-standard-document/doc/std
https://github.com/ivoa/vo-dml/blob/20-update-vo-dml-standard-document/doc/std/VO-DML.md
https://pandoc.org

VODML-ID syntax made normative

In the VO-DML meta-model XML schema VODML-ID is simply a string, rather than an ID/
IDREF structure, so having arbitrary form would be potentially problematic as there would
be no validation via the schema - although the standard says that they should be unique.

Data models that were created via the original tooling have the (proposed) normative
form anyway as the UML to VO-DML conversion generated such elements.

Originally the textual syntax of the VODML-ID for each model element was only specified
in an appendix - moved to main body to become normative

essentially the VODML-ID is derived from the location in the model

Tooling now checks that VODML-ID is correct via a schematron rule, however

tooling never “reads” that element value - it always “calculates” it, so the element
could be removed from VO-DML schema

7

https://github.com/ivoa/vo-dml/pull/46

VO-DML extension - Natural Keys
Object Relational Mapping uses surrogate keys widely -
however, in the model it is sometimes better to use a
“natural key” i.e. an existing attribute - often the case for the
target of “references”.

8

 <xsd:complexType name="NaturalKey">
 <xsd:annotation>
 <xsd:documentation>
 This constraint is used to indicate that an attribute is a natural key for its owning ObjectType, meaning that the
 attribute value should be globally unique. This may be applied multiple times to indicate that only a composition
 of several attributes make the globally unique key.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="Constraint">
 <xsd:sequence>
 <xsd:element name="Position" type="xsd:positiveInteger">
 <xsd:annotation>
 <xsd:documentation>In the case where multiple attribute values make up the natural key, this
 value indicates the ordinal number of this particular key in the compound key.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

VO-DML Metamodel XML Schema
updates

aforementioned natural key extension

make <name> and <documentationURL> optional (and
deprecated) in the <import> as they merely repeat
information that is in the imported document

Has already happened on the main branch - non-breaking -
following the XML schema versioning endorsed note.

9

Serialisation
Appendix B in the 1.0 document describes how the model might be serialised

Current tooling attempts to produce a standard serialisation for XML and JSON

based on the UML above so that a single model instance serialisation will contain both
the content and references

references that are not otherwise “contained” (see later) are emitted in the
references section

tooling creates both XML and JSON schema which can be used to validate model
instances.

Proposal is to rewrite Appendix B to make clear that new serialisation is intended for
interoperability, and thus “standard”.

Note that this form of serialisation is more suitable for writing REST web service interfaces
for the models than MIVOT.

10

Model

ReferencesContent

Serialization 2

https://ivoa.github.io/vo-dml/Serialization/

note that tooling includes automated round-trip
serialisation unit tests against generated schema.

11

XML

JSON

http://www.apple.com/uk

Reference Lifecycle/Containment
Original tooling/std
assumed that
references
“freestanding” - i.e.
lifecycles
independent

In latest tooling
references can be
“contained” i.e.
referenced element
can exist as a
composition within
some parent.

12

ReferredTo

+test1 : ivoa:integer

ReferredLifeCycle

+test3 : ivoa:string

Contained

+test2 : ivoa:string
ATestATest2

ATest3

contained

1..*

refandcontained

1..*

ref1
1

atest 1

refagg
1

refcont 1

contained
1..*

refBad

1

freestanding reference

Contained reference

Reference Lifecycle/Containment 2

tooling will
generate Java
code that will
deal properly with
contained
references

schematron rules
warn of
“dangerous”
contained
reference use

13

failed-assert /Q{http://www.ivoa.net/xml/VODML/v1}model[1]/Q{}
objectType[6]/Q{}reference[1]

Reference lifecycleTest:ReferredLifeCycle used in
ATest3.refBad is already use in unrelated composition ATest
which has lifecycle implications (i.e. the reference could
disappear unless code is aware of relationship)

ReferredTo

+test1 : ivoa:integer

ReferredLifeCycle

+test3 : ivoa:string

Contained

+test2 : ivoa:string
ATestATest2

ATest3

contained

1..*

refandcontained

1..*

ref1
1

atest 1

refagg
1

refcont 1

contained
1..*

refBad

1in
containment
hierarchy

OK bad - not automatically handled

https://github.com/ivoa/vo-dml/blob/master/tools/gradletooling/sample/src/test/java/org/ivoa/dm/lifecycle/LifeCycleDetailedTest.java
https://github.com/ivoa/vo-dml/blob/master/tools/gradletooling/sample/src/test/java/org/ivoa/dm/lifecycle/LifeCycleDetailedTest.java

Reference Lifecycle/Containment 3
Schematron
complains with
“unique
composition
rule”

however, this is
just a warning

Wording in
Standard
probably OK

14

ReferredTo

+test1 : ivoa:integer

ReferredLifeCycle

+test3 : ivoa:string

Contained

+test2 : ivoa:string
ATestATest2

ATest3

contained

1..*

refandcontained

1..*

ref1
1

atest 1

refagg
1

refcont 1

contained
1..*

refBad

1

failed-assert /Q{http://www.ivoa.net/xml/VODML/v1}
model[1]/Q{}objectType[6]/Q{}composition[1]/Q{}
datatype[1]/Q{}vodml-ref[1]

objecttype lifecycleTest:Contained is used more than
once, as target of composition relation. In this case for
containing objectType lifecycleTest:ATest3

 ** (this message will repeat itself 2 times!,
once for each different container) **

ok if lifecycle managed -
relatively easy

IVOA Base Model Additions

Following on from the serialisation and reference
containment discussions it is useful to be able to mark in a
model where the intention is to point to an external entity
(which cannot be done with references as they are internal)

primitive intIdentifier -> integer "an integer identifier that can be used as a key for lookup of
an entity that is *outside this datamodel*"
primitive stringIdentifier -> string "a string identifier that can be used as a key for lookup of
an entity that is *outside this datamodel*"
primitive ivorn -> anyURI "an identifier that can be used as a key to look up in an IVOA registry -
see https://www.ivoa.net/documents/IVOAIdentifiers/"

This is done on the base_update branch

15

https://github.com/ivoa/vo-dml/blob/base_update/models/ivoa/model/IVOA-v1.0.vodsl

VO-DML 1.2 and beyond
Lots of potential ideas/improvements, but have left them out
of 1.1 in the hope of speeding up approval of this document.

specifying UCDs

could then automatically create TAP schema/services

concept of Choice/OneOf

some specific simple constraints

e.g greaterThan

16

https://github.com/ivoa/vo-dml/milestones

DM landscape

Taken from Mark C-D’s talk last interop
17

-current VO-DML

Not VO-DML
Not VO-DML

No VO-DML concept No formal connection

Importance of VO-DML
Provides rigour in the DM design

provides a framework for validating instances.

Allows real re-use

Can show up duplication more easily

There are are growing number ObsCore extensions that do not have a VO-DML
basis

and ObsCore is widely cited as a “view” on other DMs

perhaps we should try to formalise this “view” concept in VO-DML

or we have a DM that is not as “simple” as ObsCore

18

DM concept duplication

Not guaranteed to be an accurate/complete survey, but illustrative

Sometimes the concept might be intended as a reference

Note that data models are created ‘outside’ the DM WG
19

Concept DM
Observatory (Facility) VOResource, ProposalDM

Instrument VODataService,ProposalDM,CAOM
Service VOResource, Mango, Datalink

Data Set DataSet,VODataService
Observation ObsCore, ProposalDM

Creator/Curator VOResource,DataSet
Parameter PDL, VOTable, UWS, Mango

Other approaches
SPASE (Space Physics Archive Search and Extract)

NASA PDS

These are easier to query - the whole “Domain” is in the one
model (or set of non-overlapping models)

No possible ambiguities in concepts

Don’t have to try to join together services as with the IVOA

we don’t have that luxury - we are a federation

20

https://spase-group.org/data/
https://pds.nasa.gov

DM rationalization/refactor
I am trying to facilitate the possibility of trying out some
refactoring in https://github.com/ivoa/DataModelPlayground

note that the volute repository did have more model
representations http://volute.g-vo.org/svn/trunk/
projects/dm/vo-dml-org/models/ - but this got sidelined

Not trying to find a complete normalisation of all models, but
it would be good to create a “basis set” with no duplication

could feed into the P3T efforts

21

https://github.com/ivoa/DataModelPlayground
http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml-org/models/
http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml-org/models/

Personal Vision
ObsCore has no extensions - remains “core” to all wavelengths/data types -
possibly some extra “columns” discovered from new domains - but definitely
should not be sparse.

Registry (or a slight extension of) stores definitive (i.e VO wide) instances of
“slowly changing” model elements -e.g. Observatories, Telescopes and
Instruments.

New DM factoring of something at roughly the Characterization/Dataset level,
but composed of more smaller reusable sub-models (e.g. CatalogueSource),
to be basis of more sophisticated data discovery/manipulation service.

perhaps one input to this service could be the DataLink response from the
ObsCore discovery

22

