
P3T Roadmap
Gregory Dubois-Felsmann
& P3T Tiger Team

May Interoperability meeting in Sydney, Australia
2024-05-22

● What is the road we’re setting out on here?

But first:

● What is the landscape we’re traveling?

P3T Implementation Road Map – overview

● As stated above:
○ We acknowledge change is not easy for existing projects --- that

is why we have a development/evaluation phase between now
and the next Interop
■ Phase 1 – Pilot project (no formally adopted changes)

■ Phase 2 – Phase for 1st set of recommendations

■ Phase 3 – Focus on other standards

● Now look at the larger picture…

Reminder: Phases of the project

● Three perspectives: services*, clients*, and users
 *and their maintainers

We believe:
● There are a lot of services in existence

○ Some are at large, relatively stable archives with (some) support for ongoing
maintenance and upgrades

○ Some are very thinly supported, at small sites, but still valuable
● Relatively speaking, there are fewer clients (libraries and applications)

○ The best-known are associated with large organizations and/or relatively
stably supported, and/or under active development

● Users don’t want to be distracted by technicalities
○ Users want their tools and workflows to continue working, and
○ Users want access to new sources of data and services

The existing landscape – in brief

We believe:
● This is a good situation for the sort of change we’re suggesting:

○ Introduce a new way of specifying and invoking services
○ More rigorous specifications, but also
○ A change in the actual over-the-wire pattern for service invocation

○ Do not require any existing service to be migrated
○ Either the services/protocols covered by the pilot project (e.g., TAP),
○ or others – many of which we may not get to even in Phase 3

○ Burden is on client software to evolve to support the new style
and continue to support existing services

In other words:
● The only required migrations fall on the smaller and generally better-

supported set of client libraries and applications

Implications

● Benefits to service developers and data publishers:
○ It becomes (much) easier to deploy new services in an IVOA-friendly way

○ Developers can concentrate on the substance of their services, spending their time proportionately
more on the interesting new data and capabilities these will bring to light

○ Regarding existing services:
○ Data publishers can deploy new-style versions of existing services in parallel with the old ones, and

feature development can be limited to the new one (at their discretion)
○ Once a critical mass of migrated, dual-capable clients exist:

Data publishers can eventually retire the old-style versions of services to reduce their costs
○ However, this is not in the Phase 1-2-3 roadmap, and…
○ No existing service will be required to be migrated

● Benefits to users:
○ Nothing that works now goes away
○ New services appear sooner / there are more of them

/ they stay interoperable
○ Result data formats (e.g., VOTable) are not changing

Distribution of benefits (and costs)

● Costs to client maintainers:
○ Pressure to support the new style for service invocations

○ BUT we expect this to be compensated by increased ease of developing against the more rigorous
definitions, and with the aid of code generation tooling

○ Indefinite commitment to support both styles
○ We do need PyVO, TOPCAT, Firefly, Aladin, etc. to be dual-capable for a long time

○ Note: most (not all) client maintenance comes from archives/data publishers
that receive a balancing benefit from the simplification of developing services

● Service-side costs:
○ Registering and running old and new versions of the same services

○ Technical details need investigation in Phase 1

● Costs to users:
○ Minimal if we do everything well
○ Users should not be aware of which style of service they are accessing,

if they are using a supported client

Distribution of costs

● We know some data services are accessed without using a “client” per se
○ The “there are only a few clients to migrate” argument doesn’t apply here
○ Examples:

○ Scripts using curl/wget to get simple tables in CSV
○ Coding directly against `requests` library in Python
○ HTML pages with web-1.0-style forms directly submitting form-parameter queries

○ Possibly some sophisticated ones, e.g. using XSLT to transform the result into HTML

○ “Form-parameter” service invocations will not be available for new services
○ But note that there are equivalently easy ways to submit new-style queries without full-fledged

IVOA support client libraries

● When would this become a real problem? Probably not for years!
○ Not until old services are taken down, which is not a part of the transition plan

we are envisaging. Still, it is plausible that eventually some data publishers
will want to stand down obsolete, duplicated services.

What about “informal clients”?

● Not in the obvious way

● New-style versions of existing service protocols will appear one at a time
○ No specific requirement to go through the whole body of standards and

migrate every single one
○ Unlikely to have a sharp end

● Most important milestone: when are all common clients dual-capable?

Is there a “migration period” that has an end?

During Phase 1, we can identify some key goals:
● Continue prototyping implementation and delivery of concrete services in

the new style (TAP, UWS, Execution Broker) and evaluate the results
● Develop one or more clients to be able to communicate with the new-style

services (PyVO + ? … volunteers?)
● Work out how clients, services, and Registry interact to support clients in

determining which style to use with which service, and how services
deployed in both styles should be handled

● Prepare the documents for the formal standardization process in Phase 2

Phase 1 implications

● No commitments are needed today

● We would like endorsement to continue this research project

● At the end of Phase 1 we’ll deliver a more concrete road map,
and we’ll likely have an idea of the other client teams’ openness to and
schedule for making the needed changes

● Only then will formal decisions be made, through a full standardization
cycle in Phase 2

We’re still in the prototype/demonstration era

