
OpenAPI Protocol Transition:
Technical Overview

Joshua Fraustro
May 22nd, 2024

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

1

What is OpenAPI?

A specification for defining RESTful APIs / web services
• Standardized, language-agnostic interface

• Simple to write, simple to read
• We’re preferring to use YAML over JSON

• Defines API endpoints, request/response formats, payloads and schemas

• Machine-readable

• Widely used, modern, industry standard

• Rich ecosystem of tools— editors, validators, generators

• P3T has been experimenting with OpenAPI 3.0.x, may adopt 3.10

2

What does an example UWS OpenAPI spec look like?

• Paths & Operations

3

• Parameters • Responses
https://github.com/spacetelescope/vo-openapi

What does an example UWS OpenAPI spec look like?

• Schema Objects (Payloads & Responses)

4

https://github.com/spacetelescope/vo-openapi

What are we proposing?

New (and updated) standards be described by an OpenAPI specification.

Standards be broken into two documents:

• Narrative (non-normative): Motivations, background, use cases

• Technical (normative):

• Behavior of the service (blocking vs. non-blocking endpoints)

• Explanations of parameters / payloads (beyond type descriptions)

• + the OpenAPI specification

Standards process will remain much the same:

• Reference implementations, validators, etc.

5

What are the implications?

Shorter, simpler standards documents:
• The OpenAPI spec makes a lot self-evident
• Endpoints and parameters can be  

self-documenting
• Explanations in the tech doc will be reserved  

for underlying service behavior
• Removal of ambiguity in request & response behavior

• What operations on which endpoints, with which parameters, and what responses?
• Now, clear and explicit.

6

Which ones??

What are the implications?

Simpler and re-useable component definitions
• Error responses can be defined once, and used across the standard
• “Schemas” (payloads, responses) 

 are language-agnostic
• Defined as objects, not tied to a specific 

 encoding method
• Can be defined and versioned in one  

standard (DALI) and imported to others

7

What are the implications?

Parts of the standards will need to change, complying with modern web development principles.
• Avoiding anti-patterns:

• If something isn’t easy to do with OpenAPI, we probably shouldn’t do it
• Case-insensitive DALI parameters— not typical in HTTP behavior,  

almost impossible in OpenAPI specifications
• Great opportunity for removing bad behavior:

• Simple POSTs with x-www-form-urlencoded— no preflight checks— vulnerable to CSRF
• State-changing GET requests — also vulnerable to CSRF attacks

• Move towards supporting modern protocol serialization formats
• XML support can be spotty depending on language / framework.
• By defining payloads as objects, we’re not strictly bound to it any more.
• We’re not touching the VOTable!!

8

What are the benefits? Let me count the ways!

Immediate benefits:
• Clearer, simpler standards
• Modularity of service definitions

- “See DALI” is now an actual import from a versioned DALI spec
• Much lower developer spin-up time

- Far faster for a new-hire web developer to program against an API definition, than a
22-page academic text

- Don’t need a deep understanding of DALI / UWS / TAP / VOSI to understand how the
basics work

• Clear, obvious definitions for every parameter, payload, etc.
• Flexibility for future protocol serialization methods.

9

What are the benefits? - Interactive Swagger Editor / IDEs

10

What are the benefits?

11

Server Generators Client Generators

What are the benefits?

12

Your service might already have an OpenAPI spec…

https://mast.stsci.edu/vo-conesearch/docs/swagger/index.html

What are the benefits?

13

Long-term benefits:
• Automated testing / validation of future standards changes (CI/CD)

• Changes to a standard could automatically be checked against any others that use them.
• Immediately know potentially incompatible / breaking changes

• Standards (code) coverage:
• What percentage of the standards do validators cover?
• Reference implementations / validators can be tested against their own standards.

• Consistency between service providers
• Lower barrier to entry =  

 more implementers with more clients, in more languages
• Easier to update with the next spec

It’s going to be okay!

14

• Nothing is going away tomorrow.
• We’ll have prototypes, phases, parallel services…

• There will be breaking changes… and there always has been…

• …and they probably won’t be as bad as we think…
• …and it will be easier than before to update.

• We’re not going into this alone
• We’ve got institutional buy-in.
• OpenAPI is proven tech.
• There is a rich ecosystem of tools, development 

and support.

