Radio/Interferometry use cases

Anita Richards Jodrell Bank Centre for Astrophysics/UK ALMA Regional Centre

- Outstanding issues for data standards
 - Visibilities
 - Polarization (discussed yesterday, not here)
 - Units
- Use cases
 - Finding calibration sources
 - Galactic plane surveys
 - Extracting variability and multi-v curves
 - Advanced polarization and 'cube' products

Properties under development

- Visibility data
 - Selection of calibrated data and products
 - Characterization of Fourier plane coverage

More peculiar units usage

- Flux density
 - Most images, cubes, often spectra Jy beam⁻¹
 - Require beam size (Spatial Resolution)
 - Jy arcsec⁻² or similar at coarsest Char level?
 - confuse some users, probably not universally applied
- Frequency as spectral coordinate
 - Spectral channels spaced evenly in frequency
 - Cannot give single accurate resolution in m
 - Detailed data requests in frequency units

Selection of calibration sources mainly for ALMA, e-MERLIN, EVLA, VLBI

- Overall flux scale
- Time-varying & amp
 - 'phase calibration'
 - including astrometry
- Polarization leakage and origin of pol. angle
- In addition to instrumental or atmosphere measurements

Information for source selection (requirements vary with role)

- Sources used:
 - Extra-galactic QSO etc.
 - Cool/radio stars
 - Planets and moons
- Position and accuracy (down to mas level)
 - Proper motions, ephemerides etc.
- Model of flux distribution
 - Point
 - Disc or Gaussian or other fitted model
 - Clean Components table (probably part of ...)
 - FITS image
- Model of polarized intensity distribution
 - Pol. intensity and pol. angle for point

Scope of descriptions

- Frequency range of applicability
 - Brightness, thus detectable structure f(v)
 - Spectral index/curvature (maybe in CC one day)
 - Excluded ranges (e.g. due to interference, lines)
- Time range or variability parameterization
- Spatial scales / image fidelity
 - Sensitivity & spatial resolution of image models
 - Dirty beam (sidelobes indicate quality)
 - Amplitude/uv distance plot or parameterisation
 - uv coverage or antenna positions are of indirect use only

Scope of descriptions

- Spatial scales / image fidelity
 - Sensitivity & spatial resolution of image models
 - Dirty beam (sidelobes indicate quality)
 - Amplitude/uv distance plot or parameterisation

Scope of descriptions

- Sensitivity & spatial resolution of image models
- Dirty beam (sidelobes indicate quality)
- Amplitude/uv distance plot or parameterisation

Wide field/low frequency LOFAR, SKA, some EVLA/*e*-MERLIN, also CMB

- Sources throughout field of view
 - FoV determined by:
 - Individual dishes primary beams
 - Integration (shortest data averaging) time
 - Spectral resolution (channel width
 - Some observations are 'all sky'
- Models for field-based calibration/removing confusion
 - Catalogues of points or image CCs e.g. NVSS
 - Use of HEALPIX coordinates
 - Use of shapelets and other all-sky models

Whence calibrator information?

- Information should be 'accountable'
 - References
 - Accuracy
- Published data
 - ADS, CDS, NED, observatory web sites
 - Catalogues
 - SPECFIND cross-ID of cm-wave radio sources (Vollmer et al.)
 - Plots (images, amp v. uv-distance...)
 - FITS images/CC (CASA equivalent needed)
- NRAO EVLA/ALMA source model (SDM?)
 - Differences from IVOA model
 - Need translation

Source Model: Major Objects

NRAO source model: brightness

Subsource & SourceBrightness

Galactic plane surveys

- Neat regions in Galactic coordinates
 - Selection or avoidance

Galactic plane surveys

- CORNISH 5-GHz survey (Purcell et al. 2009)
- Methanol Multi-beam spectral survey

X-ray binary radio variability Devised by Tony Rushton

Sporadic 0.9*c* jets

Core is rapidly variable

Cartoon: Dana Berry (CfA/NASA)

GRS 1915 data discovery

- Query (probably specified) radio archives
- Selection criteria
 - Data around standard GRS 1915 position
 - Calibrated visibility data
 - Frequency 1 to 30 GHz
 - Sufficient duration to map
 - Sensitivity 10 mJy or better
- Get list of suitable data with additional info:
 - Frequency bounds and (channel) resolution
 - Time duration and resolution (integration time)
 - Polarizations present
 - 2D map if already available

Request radio 'light' curve

- First step is to get total intensity map of suitable epochs (if not already available)
 - Measure position of GRS 1915
- Send data access request for flux < time:
 - In total intensity
 - At position measured for that epoch
 - In specified time-averaging intervals
 - In chosen frequency range
 - Possibly in chosen uv distance range
- VO needs to mediate request but not to know how archive pipeline manages it.

Archive pipeline process

- Archive inserts values in pipeline which:
 - Selects requested frequency and uv range
 - Rotates phase centre of uv data to position
 - Averages over all baselines present
 - Averages over requested time intervals
 - Measures visibility amplitude per interval

10

Time (hous)

12

Rotation measure extraction

zation angle

- Select data with Stokes Q and Stokes U
- Get polarization angle maps
 - One per epoch
 - Per narrow frequency interval
 - 1 MHz @ 1.6 GHz
 - Matching resolution across each band
- Measure polarization angles
 - Polarised emission is compact
- Rotation Measure is PA change with λ²

direction

Length proportional to polarized intensity

Made from maps of Pol angle (observable units: degrees) and Pol Intensity (Jy/beam)

Map products and units

10

ALMA/IRAM use case

- RA/Dec/Freq CO cube
 - Convert to velocity (LSR, radio convention)
 - Cutouts, simple squashes VO tools?
 - Smoothed spectra, moments with noise cut-off

0 ARC SEC

Specialised server-side pipeline controlled via UWS