INTERNATIONAL VIRTUAL OBSERVATORY ALLIANCE US National Virtual Observatory

IVOA Data Access Layer SIAP V2.0 Concepts and Interface

D. Tody (NVO, NRAO), F. Bonnarel (CDS), A. Richards, J. Salgado, D. Durand, A. Micol

Simple Image Access V2.0

Context

- Motivations and use-case have been covered
- Now we look at the proposed solution as it currently stands

Scope

- 2D images remain a primary focus
- Support is added for image cube data (hypercubes)
- Precision data access capabilities added (AccessData)
- Grid support: scalability, async capabilities

Core Author/Design Team

- F.Bonnarel, D.Durand, A.Micol, A.Richards, J.Salgado, D.Tody
- Much progress since Strasbourg interop:
 - http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SiaInterface

Interface Overview

Based upon existing standards

- Standard service profile (DAL2 + GWS)
 - most elements are common to all service types
- Common core data model (GDS/ObsDM)
 - most metadata DM-based, common to all DAL interfaces
- Grid capabilities (UWS for async, VOSI)

implementation mostly common to all service types

Provides

- Uniformity, robustness, completeness, code sharing

Service Operations

QueryData

- Data discovery and access; metadata query

- Simple generation of optimized virtual data

AccessData (New in SIAV2)

- Precision client-directed access to a specific dataset
- Higher performance for pure data access use cases
- Useful for other services in the future, e.g., SSA

StageData (New in SIAV2)

- Scalability; generate many images simultaneously
- Uses SIA query information to create a job under UWS

GetCapabilities

Query service capabilities (VOSI and DAL2 interface)

QueryData

Concept

- Backwards compatible with SIAV1
 - but updated to modern standards (interface, model)
- Provides
 - Discovery, basic access, metadata access, virtual data, access planning AccessData)
 - Access reference for simple access to data
- Simple approach to virtual data generation
 - Sufficient for one-step access in most common use cases
 - Service tries its best to generate "ideal image" specified by client

Parameters

- Basic: POS,SIZE, BAND, TIME, POL
 - ROI or "ideal image" maintained; REGION added
- Other discovery parameters
 - dataID, curation, resolution, calibration quality, etc.
- FORMAT, COMPRESS

AccessData

Concept

- Not a query (no votable); advance knowledge required
- Tell the service what image to generate one step access
- How to generate the image is up to the service

Logical Model

- Defines the transformations which AccessData provides
 - these can be combined, but often only one will be used
 - provide general transform, dim reduction, axis reduction, fcn

Transformations

- Filter
- Geom+WCS
- Image Section
- Function

POS,SIZE, BAND, TIME, POL (e.g., BAND=V) Image geometry (dim,size) plus WCS As in cfitsio,IRAF: "[*,5,-*]", "[*,10/30,//*]", etc.

Spectral index, vel disp, rotation measure, etc.

2		ported.					
		UTYPE	Description	Req	Default		
1 H.		Image Matrix	Transform				
-		Mapping.NAxes	Number of image axes				
: II		Mapping.NAxis	Length of each axis in pixels]	
3		Mapping.CoordRefPixel[]	Reference pixel				
		Mapping.CoordRefValue[]	WCS value at reference pixel				
-		Mapping.CDMatrix[]	Coord definition matrix				
		Mapping PCMatrix []	Coord definition matrix				
•		Mapping.CDelt[World coord delta per pixel				
À		Mapping.AxisMap [Image-to-WCS axis mapping				
7		Mapping.WCSAxes	Number of WCS axes				
:							
-		World Coord	Transform				
		Mapping.SpatialAxis.CoordType	Coordinate type as in FTTS				
÷		Mapping Spatial Axis Projection	Celestial projection				
5		Mapping SpatialAxis CoordFrame	Spatial coordinate frame			-	
:		Mapping Spatial Axis Coord Equinox	Coordinate equinox (if used)			-	
-		Mapping.SpatialAxis.CoordUnit	Unit for coordinate value			-	
:		Mapping.SpatialAxis.CoordName	Axis name (optional)				
6		Mapping.SpectralAxis.CoordType	Coordinate type as in FITS				
		Mapping.SpectralAxis.Algorithm	Algorithm type as in FITS]	
•		Mapping.SpectralAxis.RestFreq	Rest frequency of spectral line			1	
		Mapping.SpectralAxis.RestWave	Rest wavelength of spectral line				
•		Mapping.SpectralAxis.CoordUnit	Unit for spectral coordinate value				
7		Mapping.SpectralAxis.CoordName	Axis name (optional)				
-		Mapping.SpectralAxis.CoordValue]	Spectral value/band at pixel index				
-		Mapping.TimeAxis.CoordType	Time scale (UTC, TT, TAI,)				
:		Mapping Time Axis CoordUnit	Time unit			1	
		Mapping.TimeAxis.CoordName	Time axis name (optional)			1	
8		Mapping.TimeAxis.CoordVahe	Time value at pixel index			1	
:		Mapping.TimeAxis.RefPosition	TOPOCENT, BARYCENT,				
-		Marcine Data da Com	D-lainting and (2) 1 - ()				
		Mapping FolAxis.CoordType	Folarization system (Stokes etc.)				
		Mapping PolAxis.CoordName	Polarization axis name (optional)	L		4	
9		Mapping PolAxis.CoordVahue	Polarization type at pixel index				1

StageData

Concept

- QueryData is used to "plan" the job (define images to be generated)

- StageData creates a job to create 1-N images in one go
- Once the job is created, UWS is used to manage the job
- Images may be delivered to a VOSpace during execution
- Client can use a normal acref-GET to retrieve individual images

Async execution

- An individual accessData request can execute asynchronously
- StageData can be used to create many images at once

Scalability

- Multi-position query, stageData

GetCapabilities

Provides

- Ability for client to query service capabilities, interface
- Simple service operation query (GET) returns XML
- Could possibly be data-specific

Interface

•

- Available both via VOSI and as a service operation