
EXPANDING THE FRONTIERS OF SPACE AS TRONOMY

OAuth and Shibboleth with MAST

Tom Donaldson – Christian Mesh
IVOA Interop, College Park, November 2018

Default Shibboleth Setup

• Each server has an instance of Shibboleth integrated with the webserver (IIS,
Apache, etc.)

• Shibboleth is configured to protect specific routes based on user attributes.
• Routes can require an authenticated session, which forces a login,
• Or be configured to allow anonymous traffic.

• Shibboleth adds user attributes to headers for each request on configured routes.
• The application reads the headers to identify the authenticated user, if any.

Implementation Issues

• Shib sessions are established per server.
• Requires sticky routing if more than one server is used.
• After authN on one server, if you get load balanced to another server, shib won’t know your

identity unless another interaction with the IdP is forced.
• Worse for routes that allow anonymous access, since shib won’t trigger the IdP interaction.

• Non-browser clients are not set up to handle the myriad of redirects that happen
during authN.
• Lack of API token support, so a programmatic client needs to go through a full login process.
• Enhanced Client Protocol (ECP) helps, but still requires an absurd amount of client code.

• Lack of first class support in many applications (E.g., Jupyterhub)

Hybrid Approach

l Place a sidecar authentication application behind Shibboleth to store the user attrib
headers and generates a session

l Uses Shibboleth for initial login flow

l Stores the user info and session in a database and returns a Set-Cookie directive for the
session

l Applications can check the headers passed in for a session cookie and look up the
user in the database.

l If a user is not found, redirect to shibboleth sidecar for routes that require authN

l Applications can also be configured to use a shared service for looking up user info
from headers

Client -> App Server
GET /protected_url
No auth header found
302 http://auth.server/login?redir=http://app.server/protected_url

Client -> Auth Server
GET /login
302 http://idp/idp_url

Client -> IDP Server
GET /idp_url
200 IDP Login Page
POST /idp_submit
302 https://auth.server/Shiburl?params

Client -> Auth Server
GET /Shiburl?params
Generate session
Store user attribute headers + session in database
Set-Cookie USER_SESSION=<generated session>
Read redir from the passed in params
302 http://app.server/protected_url

Client -> App Server
GET /protected_url
Cookie: USER_SESSION=<generated session>
Checks USER_SESSION against database
Looks up user
200 protected data content

Improving developer / user workflow

l Instead of having every application talk to the auth database, it can instead make a
request to a route on the authorization server with all of the headers it received

l This route can return a serialized user object (we use json) that the application can
then utilize. It’s much easier to retrofit existing applications using this technique

l Adding support for API tokens. Entries can be added to the auth database which
point at the user info normally set by a session

l Users can be sent to a site on the authorization server which exposes a token
creation interface

OAuth Support

• Now that we have the concept of API tokens, it’s a small amount of work to build
an OAuth provider service to live on the auth server.

• OAuth is supported by most web applications / web frameworks and is an industry
standard.

• Web app integration is as easy as using a 3rd party library for most languages
• No per-server installation/configuration as was required with shibboleth.

• Supports scoped access
• The user only authorizes partial account access for the OAuth token

• If an OAuth token is exposed, it is easy to revoke and limited in scope

MAST Deployment

• We are deploying support for Auth.MAST in the Portal on Monday
• Our implementation includes all of the techniques mentioned above

• Shibboleth running on a sidecar host, proxying certain requests to our auth application
• Existing MAST applications (such as the Portal) are being changed to ask the auth

application for information about the current user via a service (by passing along the
headers it received)

• All MAST applications are under the mast subdomain and can share cookies. This allows the
above two points to function.

• New MAST applications are built to query the auth database directly
• Both internal and external applications can be configured to use our OAuth provider.

• This has been a few lines of configuration for each instance.
• Our Jupyterlab environment on AWS now uses this

• Will be configured to set an environment variable (MAST_API_TOKEN) which the MAST Python API will
include on all requests. This keeps even the token out of your code.

Thank you!

