
pyvospace
VOSpace Implementation in Python 3

Dave Pallot

<date/time>

pyvospace

Why the need for pyvospace?
● Works out-of-the-box with very few complex dependencies.

● Makes use of current technologies with scalability and throughput in mind.

● Easily extensible:

○ Add new and existing storage platforms with a simple framework.

○ Customisable user management (Authorisation and Authentication)

● Can be easily integrated into existing supercomputer facilities.

● Basic package runnable within minutes.

<date/time>

pyvospace

Basic features
● VOSpace Specification 2.1
● Features:

○ Python 3.6+ using AsyncIO coroutine framework.
○ PostgreSQL 11 support.
○ Docker deploy scripts.
○ Pluggable Authorisation and Authentication.
○ Framework for custom storage backend development.
○ POSIX storage backend out-of-the-box.
○ FUSE front-end client.

● Funded by Australia Astronomy Limited (AAL)

<date/time>

pyvospace
Architecture
● Metadata and storage services are separate (customisable and scalable)

○ Defers deployment architecture to the administrator (load balancing etc)

Metadata Service
● Maintains consistency of VOSpace node tree.

○ PostgreSQL ltree data type.
● Provides basic VOSpace operations:

○ create, move, copy, get, delete, metadata requests (views, properties, etc)
● Provides the Universal Worker Service interface for VOSpace transfers.

○ Offloads final phase of PushToVoSpace and PullFromVoSpace (sync and async
operations) to storage service.

<date/time>

pyvospace
Storage Service
● POSIX storage service available out-of-the-box.

○ Doubles as an example for other developers of storage backends.

Customisable Storage Backend:
● Developer implements 2 functions: download and upload.

○ Functions provide node and job details (node, view, permissions, parameters)
○ Developer free to decide how to deal with storage aspect.

■ POSIX, S3, Azure blobs etc.
○ Framework has a Transaction API that ensures database node and storage

consistency on update/create.

<date/time>

pyvospace

async def upload(self, job: StorageUWSJob, request: aiohttp.web.Request):
 # upload data to staging area first
 ….

 async with job.transaction() as tr: # lock the target node (busy) for the duration of transaction
 node = tr.target # get the target node that is associated with the data
 node.size = size # set the size of file
 node.storage = self.storage # set the storage back end so it can be found on pull request
 await node.save() # save details to space db
 await move(stage_file_name, real_file_name) # move file from staging to final location on storage.
Rollback all if any operation fails.

<date/time>

pyvospace
Extending Storage Protocols beyond HTTP(S)
1. Implement get_transfer_protocols. Called on a transfer request:

async def get_transfer_protocols(self, job: UWSJob) -> List[Protocol]:
protocols = job.job_info.protocols
if isinstance(job.job_info, PushToSpace):

if httpput() in protocols: # out of the box protocol
return [Endpoint(“http://storage01/push/jobid/”)] # specify http storage endpoint

if ftpput() in protocols: # new protocol to storage
return [Endpoint(“ftp://storage01/push/jobid/”)] # specify ftp storage endpoint

if <other> in protocols:
return ...

http://storage/jobid/
http://storage/jobid/

<date/time>

pyvospace
Extending Storage Protocols beyond HTTP(S)

2. Write space storage server. Make use of StorageUWSJobPool that constructs a UWS job and
related Transfer object i.e. destination, target node etc based on Job UUID.

pool = StorageUWSJobPool(...)

async def upload_request(self, protocol_request):
job_id = <extract job UUID from request>
response = await pool.execute(job_id, my_upload, protocol_request)
await pool.set_completed(job_id)
return response

async def my_upload(self, job: StorageUWSJob, protocol_request):
blob = protocol_request.read()
...

<date/time>

pyvospace
Limitations and Considerations
● Database:

○ Currently “harded code” to PostgreSQL because of ltree.
■ SQL separate from logic, so relatively simple to add new DB flavours.

○ Database does not validate ltree path:
■ A.B is valid even if A does not exist!
■ Path validation must occur in DB using own functions or defer to application.

○ Potentially excessive row locking due to concurrent nature of the implementation.
■ Potentially reduces throughput and responsiveness under heavy load.
■ More testing and tweaks may be required.

● FUSE library behaves very differently on different platforms.
○ Can not open data in a+ mode, does not make sense in a Space.
○ Working on supporting as many flavours as possible.

<date/time>

pyvospace
Thoughts
● Specification should consider a Space to Space replication feature.

○ Allow for trees to be replicated and synchronised.
○ Opens up the possibility of VOSpace federation(s).

■ Gracefully handle of failover.
■ High availability.
■ Scalability.

● Transfer process is particularly onerous for simple data transfers.
○ Polling for job state is antiquated.

■ Consider adding a state callback mechanism. i.e. URL, websocket etc
○ Sync transfer reduces complexity.

● Consider specifying a base user profile in specification.
○ Links users to node operations, ownership, permissions, jobs, views etc.
○ Allows a more standardised approach for interacting with different Spaces.

<date/time>

pyvospace
Work in Progress and Future Plans
● Trial at Pawsey for MWA and ASKAP users.

○ Develop necessary space views given the scientific data requirements.
● Provide an administration console out-of-the-box.
● A comprehensive web-front end.
● Add S3, NGAS and Azure blob storage options to base package.

○ NGAS will be here soon!
● Improved documentation for operators and developers, logging, comments etc.
● Integration with Travis (automated testing).
● Fixing bugs as they are found!

<date/time>

pyvospace

● Open-source repository: https://github.com/ICRAR/pyvospace

● Any contributions, ideas and comments are welcome.

● Questions?

