EPN-TAP and EPNcore v2.0

S. Erard, B. Cecconi, P. Le Sidaner, M. Demleitner and the VESPA/Europlanet team

IVOA Virtual Interop. Nov 17-19 2020
EPN-TAP / Motivation

- Europlanet EU programme(s): consistent access to Solar System data (including derived data)? VO framework seemed appropriate. Scope = Planetary Science, Heliophysics, exoplanets

- Difficulties:
 - Moving objects / targets, seldom clearly identified in existing archives
 - Targets are resolved: many coordinate systems - related to targets or configurations
 - More diverse types of measurements:
 - Not only light, but also particles, fields + lab samples

- TAP is adapted to searches in catalogues (one of the main expected usages)
- ObsCore provides similar concepts for general parameters
 - Missing vocabulary to name observing and configuration parameters
 - but this exists to some extent in PDS (space archives) and SPASE (plasma related)
- Missing UCDs for reflected light, in-situ and sample measurements

EPN-TAP = Usual TAP mechanism
 - EPNCore vocabulary + associated UCDs
 - Set of rules related to services and tables
EPN-TAP status

- First published in Astronomy and Computing (Erard et al 2014) — v1.0
- Proto-version 2.0 presented by Baptiste Cecconi at Interop 2015, Sesto
- **Mature v2.0 recently submitted as a Working Draft to DAL WG**
 This relies on publication of 55 data services worldwide (~ 20 teams) and is now mature
- All existing services are in v2.0, being reviewed and updated to latest version
- Validator in place at VOParis (PADC) (P. Le Sidaner, Interop 2015): TAP validation using TAPLINT, includes check on EPNcore keywords/ucd/units
- Preliminary EPN-TAP2 mixin in DaCHS (to be reviewed and completed)
Europlanet VESPA: Data services connected via EPN-TAP / field

Atmospheres
- Titan profiles - CIRS (Cassini, LESIA)
 - CIRS (ground based spectroscopy, IMCCE)
 - 1P/Halley spectroscopy - IKS / Vega-1, LESIA
 - BaseCom - Nançay Obs, LESIA
 - TNOs are cool - (Herschel & Spitzer + compilation, LESIA & LAM & Utinam)
 - SBNAF - (from H2020 prog, Konkoly Obs)
 - Cometary lines catalogue (IAPS)
 - Vesta & Ceres spectroscopy - VIR/DAWN (IAPS)
 - DynAstVO: NEO refined parameters (IMCCE)
 - M4ast: Small bodies orbital cat (MPC/Heidelberg)
 - Rosetta ground-based support
 - 67P illumination config (IRAP)
 - Meteor_showers predictions (IMCCE)
 - Occultations predictions, ast & sat (IMCCE)
 - LuckyStar, occultations (ERC prog, LESIA)
 - Natural satellites db (IMCCE)

Small bodies
- SSHADE ices & minerals spectro (IPAG & network)
 - Planetary Spectral Library (DLR)
- PDS spectral library (LESIA)
- Berlin Reflectance Spectral Lib (DLR)
- Hoserlab (Winnipeg U)

Surfaces
- CRISM WCS service (MRO, Jacobs U)
 - M4ast (ground based spectroscopy, IMCCE)
 - 1P/Halley spectroscopy - IKS / Vega-1, LESIA
 - BaseCom - Nançay Obs, LESIA
 - TNOs are cool - (Herschel & Spitzer + compilation, LESIA & LAM & Utinam)
 - SBNAF - (from H2020 prog, Konkoly Obs)
 - Cometary lines catalogue (IAPS)
 - Vesta & Ceres spectroscopy - VIR/DAWN (IAPS)
 - DynAstVO: NEO refined parameters (IMCCE)
 - M4ast: Small bodies orbital cat (MPC/Heidelberg)
 - Rosetta ground-based support
 - 67P illumination config (IRAP)
 - Meteor_showers predictions (IMCCE)
 - Occultations predictions, ast & sat (IMCCE)
 - LuckyStar, occultations (ERC prog, LESIA)
 - Natural satellites db (IMCCE)

Magnetospheres / radio
- M3 WMS service (Chandrayaan-1, Jacobs U)
 - CRISM WCS service (MRO, Jacobs U)
 - Mars craters (Jacobs U, + update by GEOPS)
- USGS planetary maps WMS (Jacobs U)
 - Mars craters (Jacobs U, + update by GEOPS)
- HRSC nadir images, WMS (MEx, Frei Univ)
 - M3 WMS service (Chandrayaan-1, Jacobs U)
- OMEGA cubes and maps (MEx, IAS)
 - VIMS satellites, w/geometry (Cassini, LPG)
 - VIMS satellites, w/geometry (Cassini, LPG)
 - MarsSIS GIS (Lyon)
 - Global spectral param of Mercury (DLR)

Solar
- HELIO AR & 1T3 solar features (from FP7 prog, LESIA)
 - Bass2000 (LESIA)
 - Radio Solar db (Nançay, LESIA)
 - CLIMSO (Pic du Midi, IRAP)
 - IPRT/AMATERAS (Tohoku Univ, Jap)
 - Gaia-DEM (SDO, IAS)
 - e-Callisto (Windisch, Sw)

Generic / interdisciplinary
- BDIP (LESIA)
 - BDIP (LESIA)
 - PVOL (UPV/EHU & amateur network)
 - Telescopic planetary spectra collection (LESIA)
 - PSA complete archive (ESA)
 - HST planetary data (LESIA, to CADC archive)
 - Catalogues of planetary maps (Budapest)
 - Vizier catalogues in Planetary Science (CDS)
 - Gas absorption cross-sections (Granada)
 - NASA dust catalogue (IAPS)
 - Stellar spectra, support for observations & expl. (LESIA)
 - DARTS (JAXA - currently via PDAP)
 - Herschel planetary data (ESA)
 - Interface with VAMDC (TBD)

Exoplanets
- Encyclopedia of exoplanets (compilation, LUTH/LESIA)
 - Catalogue of exo disks (LESIA)
 - Interface with DACE (Geneva)
 - ARTECS climate simulations (AOTS/INAF)
 - Atmospheric studies (UCL)
 - surface simulations (GEOPS)
EPN-TAP rules

Tables

• One table / service (similar to ObsCore) - called <service>.epn_core
• One product / row (= “granule”) - associated thumbnail is allowed and recommended
• Products can be sets of scalar in the table, or provided through a unique URL: either files or web services
• Related products, especially docs, can be associated with datalink

Parameters

• Most parameters appear as pair of min/max values and both must be provided in all cases
 (=> search intersections of coverages)
• Multivalued parameters are provided as #-separated lists
• Some parameter values must be taken from predefined lists
EPNCore design

- Mandatory parameters allow simultaneous search in all services on basic quantities (e.g. in VESPA portal)

 e.g.: target, time, location, spectral range, illumination, instrument, data type, IDs, references…

 measurement_type: identifies physical quantity through UCD

- Other, optional parameters belong to various categories:

 - common ones: file name & url, bib reference, filter, extra time scales…

 - sets of more specialized parameters are defined as topical extensions: maps, lab spectroscopy, particles…

 - extensions are only related to the definition process. These parameters are free to use whenever relevant

 - extra parameters can be defined / included in a service when nothing fits

Currently ~ 180 parameters in EPNCore

The main parameters are listed in the next slides, as an introduction to the vocabulary
EPNcore — Resource

(EPN-TAP parameter - optional in blue)

- **service_title:**
 full name of resource / schema name

- **creation/ modification/ release/ _date:**
 required for mirrors & proprietary periods

- **publisher:**
 Publisher from VOResource

- **bib_reference:**
 publication related to granule

- **processing_level:**
 can adapt to existing nomenclature
 default is to use CODMAC levels (PDS3)

(equivalent in ObsCore)

- **obs_title**

- **obs_creation_date**

- **publisher_id**

- **bib_reference**

- **calib_level**
 not the same definition/values
EPNcore — Product

(EPN-TAP parameter)

- **granule_uid**: unique id for granule in service = 1 granule per row
- **obs_id**: original observation id, to cross-reference granules with various processing, but from the same original observation
- **granule_gid**: granule group id for granules that have same processing, coordinate system, etc, to cross-reference granules with comparable processing
- **dataproduct_type**: predefined list: **im** (image), **ma** (map), **pr** (profile), **sp** (spectrum), **ds** (dynamic spectrum), **sc** (spectral cube), **vo** (volume), **mo** (movie), **cu** (cube), **ts** (time series), **ca** (catalogue), **ci** (catalogue item), **sv** (spatial vector), **ev** (event)
- **instrument_host_name**: spacecraft of observatory name (archive names recommended)
- **instrument_name**: name of instrument (archive names recommended)
- **measurement_type**: ucd - allows searching by physical quantity

(equivalent in ObsCore)

- **obs_publisher_did?** definition are alike
- **obs_id** same definition
- **obs_collection?** very similar definition
- **dataproduct_type** predefined list: **image**, **cube**, **spectrum**, **sed**, **timeseries**, **visibility**, or **event**. **same name, but not the same list!**
- **facility_name** from VODataservice (but no constraints)
- **instrument_name**
- **o_ucd**
EPNcore — Target

- **target_name:**
 Solar System target(s) or exoplanet name from IAU standard lists or sample / meteorite name or ID

- **target_class:**
 predefined list:
 planet, *satellite*, *dwarf_planet*, *asteroid*, *comet*, *exoplanet*, *sample*, *sky*, *star*,
 interplanetary_medium, *calibration*, *spacecraft*, *spacejunk*

- **alt_target_name:**
 other names of the target(s)

- **feature_name:**
 local name on target (e.g., crater, region...)

- **target_region:**
 type of region on target (atmosphere, surface...)

(equivalent in ObsCore)

- **target_name**
 (which standard?)

- **target_class**
 (list to be defined?)
EPNcore — Time

(EPN-TAP parameter - optional in blue) (equivalent in ObsCore)

- **time_min, time_max**:
 Time range min and max value of data product
 Unit: JD

- **time_exp_min, time_exp_max**:
 Exposure time min and max values of data product
 Unit: seconds

- **time_sampling_step_min, time_sampling_step_max**:
 Sampling step min and max values of data product
 Unit: seconds

- **time_scale**:
 = UTC, except for modeling

- **time_origin**:
 Where time is measured (important for space obs)
EPNcore — Spectral

(EPN-TAP parameter)

• `spectral_range_min, spectral_range_max`: Spectral range min and max value
 Unit: Hz

• `spectral_resolution_min, spectral_resolution_max`: Filter bandwidth min and max values
 Unit: Hz
 (will evolve to resolving power f / Δf)

• `spectral_sampling_step_min, spectral_sampling_step_max`: Spectral sampling min and max values
 Unit: Hz

(equivalent in ObsCore)

• `em_min, em_max`: same definition, but unit in meter

• `em_res_power`: not the same definition
 relative resolution here: |λ / Δλ| = |f / Δf|
EPNcore — Spatial

(EPN-TAP parameter) (equivalent in ObsCore)

- **spatial_frame_type**: none / celestial / body / cartesian / cylindrical / spherical

- **c1_min, c2_min, c3_min, c1_max, c2_max, c3_max**: Spatial ranges min and max values on 3 axes, as defined in spatial_frame_type
 Unit: degrees or km / au

- **c1_resol_min, c2_resol_min, c3_resol_min, c1_resol_max, c2_resol_max, c3_resol_max**: Spatial resolutions min and max values
 Unit: degrees or km / au

- **spatial_coordinate_description**: full identification of frame with std ID - TBD

- **s_region**: STC-S string (or MOC?), ambiguous

- **s_ra, s_dec, s_fov**: • s_resolution

- **spatial_origin**: origin of frame in case of ambiguity
EPNcore — Illumination & geometry

(EPN-TAP parameter) (no equivalent in ObsCore)

- **incidence_min**, **incidence_max**: The incidence angle parameters define the upper and lower bounds of the incidence angle variation in the data (also known as Solar Zenithal Angle)
 Unit: degrees (0° = normal to surface)

- **emergence_min**, **emergence_max**: The emergence angle parameters define the upper and lower bounds of the emergence angle variation in the data (viewing angle)
 Unit: degrees (0° = normal to surface)

- **phase_min**, **phase_max**: The phase angle parameters define the upper and lower bounds of the phase angle variation in the data
 Unit: degrees (0° = opposition)

- **solar_longitude_min/max**: ~ true anomaly counted from N spring equinox position defines the season on the target at time of observation
 Unit: degrees (0° = N spring equinox)

- **local_time_min/max**: Local time on FoV at time of observation
 Unit: degrees (0° = midnight)

- **target_distance_min/max**: distance to observed FoV at time of observation

- **target_time_min/max**: time at target location, to handle simultaneous observations from different locations in the Solar system
EPNcore — Access

(EPN-TAP parameter) (equivalent in ObsCore)

- **access_url**: URL used to access the data may be a web service

- **access_format**: VO-compliant formats preferred, but anything is acceptable to accommodate archive data: VOTable, Fits, CSV, ASCII, PDS (+ standard image formats), etc

- **access_estsize**: approximate size of data file Unit: kB

- **file_name**: name of the data file, in case this bears information

- **thumbnail_url**: URL used to get a preview of data as a small sized image
Open issues

- Vocabulary will keep growing with more extensions. Need for more UCDs!
- Datalink may be difficult to handle (need to grab links provided in dl tables)
- Some flexibility expected in ADQL? Non-ambiguous support of contours, etc
- Extra standards required:
 - Target names (small bodies) => IAU / SSODNet service
 - Coordinate systems => being listed. Body-fixed frames need be OGS compliant
 - Observatory / space mission catalogues and ID => current VO project
Work Plan

- EPN-TAP document submitted as WD to DAL
- XSD schema was issued for v1.0, to be updated
- EPN-TAP services are declared in the registry with an ivo-id, to be reviewed (there are remnants of older versions)
- TAP clients can query all services
 - optimized clients: VESPA portal; EPN-TAP lib in CASSIS and 3Dview
- TAP validator at VOParis / PADC has an EPN-TAP mode
 - Existing mixin in DaCHS, to be checked and completed
- Plans for a future v2.1, would imply major upgrade of existing services (and clients?)