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Uncertainties

“Lack of knowledge about the truth”

Aleatoric

e Due to the random nature of getting data (noise in measurements]

« Cannot be reduced by better understanding

Epistemic
 Ignorance about he model that generated the data

» We can improve our knowledge by more experiments
(e.g. different network architecture)

» Bayesian deep learning



Bayesian Deep Learning
coming to astronomy
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Standard deep network classification

N
NLL = min Z — log P(y; | x;, W)

w “
=1




Bayesian Deep Classification

P(y | x) = Jffé(ym, WP (W| D) dw

P(W| D) = q(w|0)

6 = minKL (g(w|0) || 2(w| D))
0




Eric J. Ma on Youtube

Eric J. Ma - An Attempt At Demystifying Bayesian Deep Learning @ #

\ ,, Take-Home Point 1
Deep Learning is nothing more than compositions of functions on matrices.
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https://www.youtube.com/watch?v=s0S6HFdPtIA




Eric J. Ma on Youtube

Take-Home Point 2

Bayesian deep learning is grounded on learning a probability distribution for each
parameter.
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Bayesian Deep Learning
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Uncertainty in Deep Learning

Yarin Gal

Department of Engineering

University of Cambridge

This dissertation

Gonville and Caius College September 2016

Dropout as a Bayesian approximation: representing model
uncertainty in deep learning
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Google: NIPS 2015 deep_learning_uncertainty. pdf



Different picture of softmax
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(a) Softmax input as a function of data x: f(x) (b) Softmax output as a function of data x: o ( f(x))

NIPS 2015 deep learning uncertainty.pdf
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Predictive probability
IS NOT

predictive uncertainty

Standard deep learning tools for regression and classification do not capture model
uncertainty.

A model can be uncertain in its predictions even with a high softmax output (fig. 1).

Passing a point estimate of a function (solid line 1a) through a softmax (solid line 1b)
results in extrapolations with unjustified high confidence for points far from the
training data. x* for example would be classified as class 1 with probability 1.
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i

(a) Arbitrary function f(x) as a function of data x (softmax inpur) (b) o(f(x)) as a function of data x (softmax outpur)

Figure 1. A sketch of softmax input and output for an idealised binary classification problem. Training data is given between the
dashed grey lines. Function point estimate is shown with a solid line. Function uncertainty is shown with a shaded area. Marked with a
dashed red line is a point =~ far from the training data. Ignoring function uncertainty, point =~ is classified as class 1 with probability 1.




MC Dropout method

Gal & Ghahramani 2016 .
Monte Carlo Dropout Gal & Ghahvamani 2016 (RNNs)

Gal+2017

Corina+2018

Cortes-Cirano, Andreas 2018

* Premise:

¢ Obtain mean and variance from an ensemble of
predictions that are generated by applying
dropout at test time.

* (Considered approximately Bayesian via Deep
Gaussian Processes

* Concrete Dropout provides a procedure to
optimize the dropout in each layer during
training.

* Recipe:
* Training

» Train model H maximizing the log- *-¢] B T Brian Nord
likelihood . SCMA VIl 2021

* Prediction

« Make a prediction u;, o; from the model

H that has a dropout d; applied
e Repeatfori € {0,1,...., M} for M Ensemble of M predictions
generated from independent
samplings via dropout.




Spectroscopic redshift experiment

Prediction of QSO redshift - emission line pattern
Formulation as regression or classification
Classification in bins — interval width 0.01

Inspired by Stivaktakis R. et al. (Convolutional Neural Networks for Spectroscopic Redshift
Estimation on Euclid Data. In IEEE Transactions on Big Data, vol. 6, no. 3, 2020.)

Preparation of spectra — continuum normalisation
Cut and regridding to the same grid

Rescaling to unit variance zero mean



Spectroscopic redshift experiment

Experimental Data of Bayesian Redshift Prediction

» Trained on fully human-labelled 12th Sloan Digital Sky Survey
(SDSS) quasar superset (0.5 million human-labelled spectra).

» Generalisation capability is evaluated on the 16th SDSS
quasar superset (1.5 million spectra).

—— ZVI column from the DR12Q) superset

Z column from the DR1GQ) superset

. . . Lo I
1 2 3 1 i
Redshift from Visual Inspection or Pipeline




Spectroscopic redshift experiment

Metrics to Evaluate Bayesian Redshift Prediction

Given N is the number of test spectra, z is the true redshift, Z is
the predicted redshift, and c is the speed of light:

Root-mean-square (RMS) error Egms = \/% Zﬁle (2, — zn)>.

12—z

1+z -

Median Av Median of the velocity difference: Av = ¢ -

Catastrophic z ratio The ratio of redshift predictions
with Av > 3000 kms—1.

Coverage The ratio of the count of spectra for which we accept
predictions of the Bayesian CNN.




Predictive entropy

p(y = clx’,6;)

?




Thresholding

Utilisation of Uncertainty from the Bayesian CNN
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Figure: Dependence of catastrophic z ratio and coverage on a predefined

threshold. The plots compare uncertainty in the form of entropy
from the Bayesian CNN (MC dropout) and classical CNN (std. dropout).




Wrong SDDS pipeline — high z QSO

spec-9174-58070-0876.fits
Z = 6.488

SOURCE_Z = PIPE

z = 0.38 (shown)

H=1.0

3000 4000 5000 6000

Rest Frame Wavelength [A]




Hints for human decision

Ho spec-1951-53389-0614. fits
l —_— Z =0.079
SOURCE_Z = DR6Q_HW

—

6000 7000
Rest Frame Wavelength [A]

spec-1951-53389-0614.fits Crn
z2 =270 *

H=4.9

O vl Ly o
Wkw—w

1000 1200 1400 1600 1800 2000 2200 2400

Rest Frame Wavelength [A]

Flux after Data Preparation
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Highest entropy — wrong

spec—11546-58488-0596.fits
Z = 0.629
E‘_:DUR.CE_Z = PIPE
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corrects the SDSS pipeline

spec-9413-58080-0181.fits
Z = 6.099

SOURCE_Z = PIFE
IS_ASOFINAL =1

Z =0.31 (shown)

H=10.0

Flux [107'7 erg em™2 s7! A7)
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Figure B6. Spectrum with incorrectly high redshift prediction by the pipeline. The Bayesian CNN correctly predicted Z = 0.31 with A =0.

spec-9565-58127-0536.fits
Z = 5.609

SOURCE_Z = PIFE
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Figure B7. Spectrum with incorrectly high redshift prediction by the pipeline. The Bayesian CNN correctly predicted Z = 0.23 with H = 1.6.




QSOs missing due
to SDSS pipeline error

T
spec-8731-57416-0880.fits
Z =10.236

SOURCE_Z = PIFE

IS OSO0FINAL = 1)

Z = 2.08 (shown)
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spec-7639-57297-0515.fits
Z = (.000

SOURCE_Z = PIPE
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spec-7827-57278-0178.fits
Z = —0.004

SOURCE_Z = PIPE
IS SO0 FINAL =10
Z =0.98 (shown)
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Bayesian deep network errors

spec-8760-57672-0226 . fits
Z = 0.000 (shown)

SOURCE_Z = DRE0Q_HW
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Figure B16. Error of the Bayesian CNN that does not recognise a star (primary Z = 0 is the true redshift) probably because of the emission lines.
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spec-2520-54584-0249.fits
Z = 0.138 (shown)

SOURCE_Z = DR7TQV_SCH
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Figure B17. Error of the Bayesian CNN that probably misidentified a spectral line. However, the predictive entropy is high (F = 4.8).




Conclusions

Bayesian deep learning is a relatively new method, it has
just entered the astronomy as well

Bayesian deep learning is a good way to get uncertainty

Predictive entropy may identify wrong predictions or
strange cases - hand it to expert for verification

There is no simple threshold to decide !

Can augment the decision of other pipelines (e.g. template
based)

Combination with Active learning - promissing future





