
Global Discovery in pyVOGlobal Discovery in pyVO

Markus Demleitner

msdemlei@ari.uni-heidelberg.de

• A proposed API

• Problems of global dataset discovery

• Registry aspects

• What Registry could fix

• Query aspects



The Image Discovery APIThe Image Discovery API

What I want to offer:

images, log = discover.images_globally(

space=(132, 14, 0.1),

time=time.Time(58794.9, format="mjd"),

spectrum=600*u.eV,

inclusive=False)

images would be a list of obscore-like metadata , and log would

be information on which services yielded how much (or how

they failed).

If True, inclusive would make the function ask services without

coverage information and return SIAP1 images that have no

usable information on time and spectrum.



Global Dataset DiscoveryGlobal Dataset Discovery

In the VO, global dataset discovery has two steps:

1. Locate services that could have relevant datasets

2. Send an appropriate query to each service discovered.

How many candidate services are there for images? Try:
import pyvo

print("#sia", len(pyvo.registry.search(servicetype="sia")))

print("#sia2", len(pyvo.registry.search(servicetype="sia2")))

print("#obscore", len(pyvo.registry.search(datamodel="obscore")))

That’s:
#sia 267

#sia2 101

#obscore 49



A Registry ChallengeA Registry Challenge

Querying 400 services all the time is not viable. And the VO

will be growing further.

First reduction step: Use your constraints (“Covers M1 in X-

Ray”). But:
select count(*) from

rr.stc_spatial

natural join rr.capability

where standard_id like ’ivo://ivoa.net/std/sia%’

At the moment, only 83 SIAP1/2 services declare their spatial

coverage (30 for spectral, 43 for temporal; SSAP has 35 spatial

coverages). Please improve this!



The Obscore ProblemThe Obscore Problem
Obscore services are currently found as TAP services with the

obscore data model.

Hence, their coverage is generally not useful: there can be a lot

else in the TAP service.

Second request to Registry: Please change the Obscore regis-

tration pattern to how it’s done for EPN-TAP (i.e., as a table

with its own metadata).



Dupes, Dupes, DupesDupes, Dupes, Dupes

How many resources have both SIAP1 and SIAP2 interfaces?
select count(*) from

rr.capability as a

join rr.capability as b

using (ivoid)

where

a.standard_id=’ivo://ivoa.net/std/sia’

and b.standard_id=’ivo://ivoa.net/std/sia#query-2.0’

That’s 24 at the moment; in the service selection, you can filter

these out by preferring SIAP2. But. . .



Dupes from ObscoreDupes from Obscore

At the GAVO data centre, all of its 20 SIA services are also

reflected in its Obscore (and sitewide SIAP2 service, too). It

would be a bad waste of resources to fire off the 20 extra

requests.

Proposal (re-using auxiliary capabilities): SIAP(2) and SSAP

records should include isServedBy relationships to Obscore,

TAP, and sitewide SIAP2 services.

Third request to registry: Recommend that.



Running the QueriesRunning the Queries

SIAP2 and Obscore are easy: Just translate the constraints to

queries and collect the rows you get back (slightly normalised).

SIAP1 is more difficult: no (generally usable) constraints on

time and spectrum, so you need to filter locally if possible.

Also: result rows need to be mapped to the Obscore DM.

Main problem, though: Dealing with hanging or disappearing

services, timeouts, hanging reverse proxies. . .



How to logHow to log

Reminder: images, log = images_globally(...)

How machine-readable should log be?

It’s an artefact of provenance at the very least: you need to

know which services happened to be down with your queries.

It’s also potentially a debugging aid.

But if you log everything, it’ll be extremely painful to see

anything in the log. Are there good models for this kind of

thing?



OMG TestingOMG Testing

Writing unit tests for code of this kind is a nightmare: Do we

really want to mock the Registry and lots of services?

Perhaps. But for now I’m trying to get by LearnableRequest-

Mocker that pulls actual data and builds files from it.

Is this a good idea? Hm.



StatusStatus

For PoC-level code with rudiments of tests see pyVO PR #470.

It’d be great if a few other people participated in the effort;

I’d already be grateful for folks interested in it from a user

perspective.



Future DirectionsFuture Directions
Once the basics are there, here’s some extensions I could see:

• Allow RoI geometries, intervals for scalars

• Enable object lists for upload (but: that only works for

Obscore)

• Optionally, automatic cutouts to the RoI using SODA

• Registry work to make this faster and more reliable

. . . please join me!


