
ivo ADQL UDFs in the Pipelineivo ADQL UDFs in the Pipeline

Markus Demleitner

msdemlei@ari.uni-heidelberg.de

• Reminder: What this is about

• Two UDFs for UDF catalogue 1.1

• Six UDFs for UDF catalogue 1.2



ADQL User Defined FunctionsADQL User Defined Functions
TAP operators can add functionality to their ADQL engines

by providing extra functions. Their names should start with a

provider-specific prefix, as in:
select top 1 gavo_to_mjd(’2023-10-18T15:57’)

from tap_schema.tables

[=60235.664583]

When multiple operators provide the same functionality, they

should converge on a common name and use the ivo prefix.

The “Catalogue of ADQL User Defined Functions”, now in

Version 1.0 (Juaristi Campillo and Demleitner 2021) lists these

ivo UDFs.



Towards Version 1.1Towards Version 1.1
Version 1.1 of the UDF cat is currently proposed (see

http://ivoa.net/documents/). There are two new UDFs in

there:

ivo_epoch_prop_pos(ra, dec, parallax, pmra, pmdec,

radial_velocity, ref_epoch, out_epoch) -> POINT

and
ivo_histogram(val, lower, upper, nbins) -> INTEGER[]

Please review and post to the DAL list if you have thoughts

about this.



Towards Version 1.2Towards Version 1.2

There are already several functions slated for version 1.2. Please

chime in if you think they should be defined differently.



ivo normal randomivo normal random

ivo_normal_random(mu REAL, sigma REAL) -> REAL

The function returns a random number drawn from a normal

distribution with mean mu and width sigma.



ivo simbadpointivo simbadpoint

ivo_simbadpoint(identifier TEXT) -> POINT

gavo simbadpoint queries simbad for an identifier and returns

the corresponding point. Note that identifier can only be a

literal, i.e., as simple string rather than a column name.

e.g., ivo_simbadpoint(’GJ 699’)

-> POINT(269.452076958619, 4.69336496657667)



ivo to jd, ivo to mjdivo to jd, ivo to mjd

ivo_to_jd(d TIMESTAMP) -> DOUBLE PRECISION

ivo_to_mjd(d TIMESTAMP) -> DOUBLE PRECISION

The functions converts database timestamps to (modified)

julian dates. This is naive; no corrections for timezones, let

alone time scales or the like are done. You can thus not expect

this to be good to second-precision unless you are careful in the

construction of the timestamp.

This is so you can do date computations even if the table

schema (regrettably) has timestamps.



ivo transformivo transform

ivo_transform(from_sys TEXT, to_sys TEXT, geo GEOMETRY) ->

GEOMETRY

The function transforms ADQL geometries between various

reference systems. geo can be a POINT, a CIRCLE, or a POLY-

GON, and the function will return a geometry of the same type.

From sys and to sys must be literal strings. Reference frame

names are case-sensitive and must be taken from the IVOA

refframe vocabulary.



ivo epoch propivo epoch prop

ivo_epoch_prop(ra DOUBLE PRECISION, dec DOUBLE PRECISION,

parallax DOUBLE PRECISION, pmra DOUBLE PRECISION,

pmdec DOUBLE PRECISION, radial_velocity DOUBLE PRECISION,

ref_epoch DOUBLE PRECISION, out_epoch DOUBLE PRECISION)

-> DOUBLE PRECISION[6]

Returns a 6-vector of (ra, dec, parallax, pmra, pmdec, rv) at

out epoch for these quantities at ref epoch. Units on input and

output are degrees for ra and dec, mas for parallax, mas/yr for

pmra and pmdec, and km/s for the radial velocity. ref epoch and

out epoch are given in Julian years. parallax, pmra, pmdec, and

radial velocity may be None and will enter the computations as

0 then, except in the case of parallax, which will be some small

value.



Your Turn!Your Turn!
Feedback on all of these is welcome on the DAL list (or perhaps

as a bug on https://github.com/ivoa-std/udf-catalogue).

If you have useful UDFs in your TAP service and want to

promote it to ivo : Talk to me; perhaps I’ll be your second

implementation!

Thanks!


