
VOSpace implementations in OpenCADC
and VOSpace-next

Patrick Dowler
Canadian Astronomy Data Centre

IVOA InterOp 2023b

VOSpace-2.1

● What is VOSpace?
○ REST API (abstraction) to hierarchical storage: nodes
○ permissions using GMS
○ annotate nodes with properties (simple metadata tags)
○ transfer negotiation with extensible set of transport protocols
○ async server-to-server transfers (client: fire and forget?)

● 2.1 became a REC in 2018, relatively minor updates
● 2.0 became a REC in 2013
● most of the OpenCADC code from early in the CANFAR project

○ 10 year old standard
○ 10 year old code

● CADC/CANFAR: we think this is for user storage…that’s really just
what we use it for, not what it is

OpenCADC VOSpace implementations

● libraries:
○ java libraries for most (>95%) of server implementation
○ python library and client tools

● vault: RDBMS for “nodes”, object store for “bytes”
○ distributed storage using CADC archival storage system
○ robust long term storage and preservation
○ currently 230 million files, 900 TiB used

● cavern: POSIX filesystem for “nodes” and “bytes
○ CEPH-fs back end
○ mountable into Science Platform containers
○ uses fs attributes (node properties) and fs ACLs (permissions)
○ currently 900 TiB capacity, 325 TiB used
○ posix-mapper : helper service to manage local posix uid/gid

OpenCADC VOSpace implementations

● what works well?
○ users organize their own data
○ users control permissions (public flag, GMS groups)
○ enables collaboration
○ transfer negotiation enables robust transfers (with a good client)
○ many opportunities to extend with custom features

● what works poorly?
○ busy data node
○ quotas are hard
○ paging
○ transfer negotiation is too complex, introduces needless latency
○ views are never the best solution to any problem
○ easily shareable link to a file not part of standard
○ recursive operations poorly specified (update nodes, deletion)

Proposal #0

● paging container nodes with uri and limit
○ no overflow/truncation indicator so client makes 1 extra request
○ implementation not very usable and not scalable in posix

filesystem

● proposal: make paging optional
○ still require support for limit=0
○ allow InvalidArgument fault? or define UnsupportedOption?

○ how to tell clients what to expect? TBD

VOSpace transfer negotiation

● get data out of a vospace:
○ pullFromVoSpace: give URLs(s), client initiates connection
○ pushFromVoSpace: server initiates connection

● put data into a vospace:
○ pushToVoSpace: give URL(s), client initiates connection
○ pullToVoSpace: server initiates connection

● also internal copy, move, rename

VOSpace transfer negotiation

● general purpose /transfer endpoint (UWS async)
○ overhead: POST job info, redirect to job, POST to start job, poll

job, get job result(s), GET transfer details document (with usable
URLs)

○ minimally: 5 https requests

● slightly optimised /synctrans endpoint (sync)
○ overhead: POST job info, redirect to job, GET sync job, redirect

to transfer details, GET transfer details document (with URLs)
○ minimally: 3 https requests
○ predicated on making sync a layer over async

proposal #1: VOSpace files endpoint

● GET node metadata: /srv/nodes/path/to/a/node

● GET file data: /srv/files/path/to/a/node
○ container node: fail (400?)
○ data node: deliver bytes or redirect to a URL that can

● makes view=data obsolete: deprecate
● makes /synctrans with parameters obsolete: deprecate
● GET only: still need to negotiate for PUT (cannot redirect)

● implemented in cavern and vault:
○ other mechanisms almost never used but still add complexity
○ users can predictably create URLs to share with collaborators or

put in web pages
● makes the simplest thing actually the simplest thing!!

Proposal #2: simplified transfer negotiation

● /transfers for transfers that are inherently async
○ pullToVoSpace
○ pushFromVoSpace
○ internal copy, move

● /synctrans for transfers that are initiated by client
○ pushToVoSpace aka PUT
○ pullFromVoSpace aka GET
○ decouple from async and jobs
○ minimally: POST and read response (implementation may use

redirects, clients should just follow)

● rename as a simple sync request? TBD

Proposal #3: explicit recursive operations

● delete node: DELETE /srv/nodes/path/to/a/node
○ currently: delete is implicitly recursive – dangerous!
○ propose: delete non-empty container node: FAIL

● propose: UWS async job for recursive delete
○ details about behaviour w.r.t. permissions: TBD

● update node (set properties): POST /srv/nodes/path/to/a/node
○ set node properties on that node only

● propose: UWS async job for recursive set node props
○ details about behaviour w.r.t. permissions: TBD

● both of these take time to execute that scales with how many nodes
they encounter

● service implementations can balance/constrain the load
● users can monitor a job and potentially kill it

Proposal #4: alternate format for API payloads

● VOSpace “node” document: XML, input and output
● VOSpace “transfer” document: XML, input and output
● UWS “job” document: XML, output only

● implemented**: JSON documents with equivalent DOM
○ add JSON format to standard(s)
○ client selected via HTTP accepts header
○ probably: XML format is the default

● child node listing is currently a “node” document with all the child
nodes
○ not scalable
○ if paging optional: need list format that is easily streamed and

consumed
○ TODO: see if TSV would suffice

VOSpace implementation details

● ready-to-use docker images:
○ images.opencadc.org/platform/cavern
○ images.opencadc.org/storage-inventory/vault (SOON)

○ generally: libraries are published in maven, but we prefer to
deliver and support use of pre-built images

● plans for near future:
○ finish new vault implementation and migrate content
○ move as much client code to PyVO as possible
○ incremental improvements, support additional types of back end

storage

VOSpace implementation details

● open source code in OpenCADC

● core libraries (java):
 https://github.com/opencadc/vos

● cavern (posix filesystem):
https://github.com/opencadc/vos

● vault (db + storage-inventory) – IN PROGRESS
https://github.com/opencadc/storage-inventory

● client tools (python):
https://github.com/opencadc/vostools

https://github.com/opencadc/vos
https://github.com/opencadc/vos
https://github.com/opencadc/storage-inventory
https://github.com/opencadc/vostools

VOSpace-next summary

● paging optional

● files endpoint

● simplified transfer negotiation

● first class JSON support

