Imaging spectroscopy storage in planetary science

(and beyond)

S. Erard and the VESPA / Europlanet team

Observatoire de Paris-PSL

IVOA Interop, Tucson Nov 10-12, 2023

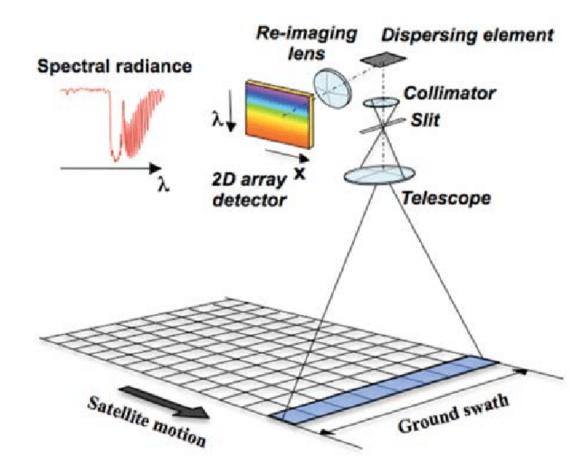
Europlanet 2024 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871149

Basic observational measurements for planetary surfaces and atmospheres. The main source form mineralogical composition of planetary surfaces - mostly in the visible/near-IR range

Relatively new (first dedicated instrument flown on Galileo) Also used in Earth Observation

3D data, different from filter cameras:

- lower spatial resolution, much larger spectral resolution
- acquisition process is different (spectral dimension acquired in one shot)

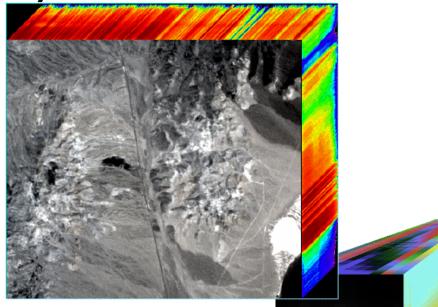

Measurement principle:

the main one is pushbroom

- 2D data at each time step: 1 spatial dim & 1 spectral dim
- 2nd spatial dim acquired through time

Alternative modes:

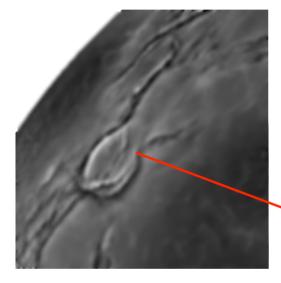
- 1 spectrum / time step
- 2 spatial dim acquired through time
 (either with 1D detectors or échelle
 spectrometers: 2D used for spectral dim)


Final data format:

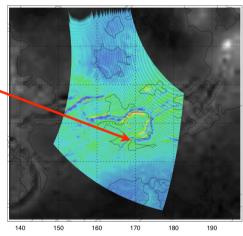
3D spectral cubes

- With significant spatial resolution from orbit

- Also usable with only a few points on the target (telescopic observations, flybys...)

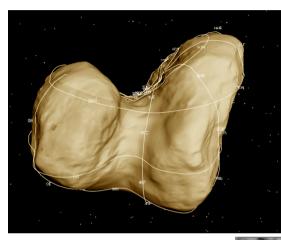

- Echelle spectrometers can also produce spectral cubes (VIRTIS-H / VEx & Rosetta)

Coordinates - projection on body

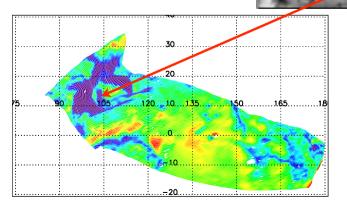

Extra info required for each pixel:

- Coordinates + wvl vector (to plot data)
- Illumination angles (to analyse data)
- each pixel has an extended footprint (for comparison with HR imaging)

Cube slice: spatial dimensions (~ single wavelength image)

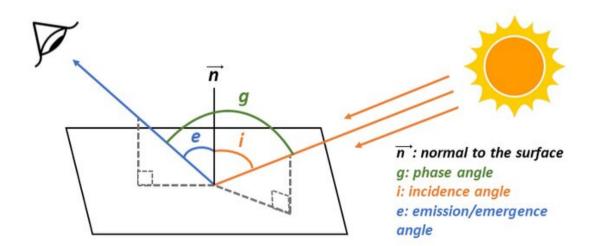

VIRTIS-M VenusExpress

Projected image on surface (~ map)


Coordinates - projection on body

Particularly important for irregular small bodies...

VIRTIS-M Rosetta


Cube slice: spatial dimensions (~ single wavelength image)

Projected image on shape model (~ map)

Illumination angles on body

3 angles: incidence, emergence, phase Affect the spectra (level, slope, absorption depth) => required for analysis, provided at spectrum level

Data format requirements

- 3D organisation related to acquisition sequence => direct plots make sense **For each pixel, provide:**
- Complete spectrum
- Spatial coordinates for exact visu and comparison with HR images (typically coord of footprint corners + center)
- Illumination angles (i, e, phi) for analysis / correction (maybe on several reference surfaces)
- Acquisition time (interpolation, etc) + other metadata (airmass, altitude...)
- (assumed common to all spectra): spectral vector + other metadata

Space archives

- Extremely diverse
- In PDS3, dedicated data objects: Qube, Spectral_cube + ISIS cube (USGS)
 - but other data objects often used
 - may be different for raw and calibrated data
 - every single experiment uses specific variations on Qube
- No generic software reading (or writing) everything correctly
 => major blocking point to handle these observations
 => incredible loss of time for new experiments
- PDS4 guidelines: a 3D variation of array for data, separated geometry
- Fits: limited support for planetary coordinates (but coming)

Main space archives

- Family of ISM, OMEGA, VIRTIS / VEx, VIRTIS Rosetta:
 - Data = Qube, geometry in separated Qube files with px/px correspondence
- NIMS / Galileo: object = Table (1 / scan ?)
- VIMS / Cassini (2018 version) = Spectral_cube
- THEMIS object = Spectral_cube & Image
- CRISM / MRO object = Images in 3D (with bands)
- HRII / DeepImpact : 2D fits files with 2 images successive planes in separated files, difficult to recombine and get spatial dimension
- NIS / NEAR ?
- VIR / Dawn Qubes geometry not included in archive
- M3 / Chandrayaan Tables
- MASCS / MESSENGER Binary Table

- JIRAM / Juno - Tables and Images — successive planes in separated files, difficult to recombine and get spatial dimension

Software?

- Typically home brewed libraries, often IDL
- Generic PDS libraries from PDS SBN
 - IDL PDS3 does not support every archive
 - python PDS3: TBC
 - python PDS4: TBC
- Generic IDL library from VIRTIS / VESPA (LecturePDS)
 - access to (several) historical datasets
- ENVI: OK plot/analysis tool, needs IDL input routines, expensive
- Aladin + CASSIS plugin (sky only currently) for visu
 - requires fits format + WCS

Improvements?

- 1) programming approach python / IDL / whatever
- Fixed data / files organization
- Fixed keywords to identify info
- Small bodies are difficult to handle (refer to a given shape model)
- 2) VO (or non-VO) tools
- Data + geometry in a single file?
- Fits is handy, provided:
 - support for planetary reference frames => Marmo et al 2018 10.1029/2018EA000388
 - support for illumination angles TBD

Improvements in fits may help

- Support for planetary reference frames => Marmo et al 2018 / WCSlib 8.0 OK for images, supported in DS9 Issue with longitudes in Aladin?
- WCS adapted for cubes => fits TAB projection (allowing interpolation)
 Assessment with DS9 on historical datasets, should be compliant with PDS4
 Marmo et al 2019 4th Planetary Data Workshop, held 18-20 June, 2019 in Flagstaff, Arizona, abstract 7094
- Other solutions from ground observatories / astronomy ?