
VO at the Limit: Optionality Considered

Harmful

Markus Demleitner

IVOA Southern Spring Interop 2024, Malta Nov 14-17

Apps WG

1

The Story

For GAVO’s Big VO Course (Demleitner and Heinl et al., 2024), I

wanted to write an all-VO TAP query:

“Give me all measurements of proper motions in the vicinity of

point X.”

This turned out to be a surprisingly bad pain.

Here is the story.

2

Find Tables With pos.pm Columns

The pyVO registry API cannot return information on tables yet.

Thus, we run a custom RegTAP query:

SELECT DISTINCT access_url, table_name

FROM rr.interface

NATURAL JOIN rr.capability

NATURAL JOIN rr.res_table

NATURAL JOIN rr.table_column

NATURAL JOIN rr.stc_spatial

WHERE

standard_id LIKE ’ivo://ivoa.net/std/tap%’

AND ucd LIKE ’pos.pm%’

AND 1=INTERSECTS(POINT({RA}, {DEC}, {SR}), coverage)

AND (table_type!=’output’ OR table_type IS NULL)

3

Query Construction: UCDs

It would be nice if astropy tables had a fieldname_with_ucd

function. What I did instead was not terribly hard, though:

def fieldname_with_ucd(ucd, table):

ucd = ucd.lower()

for col in table.columns:

if col.ucd and col.ucd.lower()==ucd:

return col.name

raise KeyError(ucd)

The UCD’s case insensitivity has doubled the complexity of this

function.

Mitigation: no case folding any more (in new-ish machine

interfaces).

4

Query Construction: Delimited Identifiers

for dest_name, ucd, unit, type in RESULT_SCHEMA:

select_clause.append("{} AS {}".format(

fieldname_with_ucd(ucd, db_table),

dest_name))

This fails quickly because of a breach of VODataService:

Incorrect ADQL query:

Encountered "/". Was expecting one of: <EOF> "." "," ";" "AS"

"WHERE" "GROUP" "HAVING" "ORDER" "\""

<REGULAR_IDENTIFIER_CANDIDATE> "NATURAL" "INNER" "LEFT"

"RIGHT" "FULL" "JOIN"

[W]hen delimited identifiers are used for column names on

the relational side [. . .] the quotes must be part of name’s

value, and the capitalisation used in the DDL must be

preserved.

5

Saving Requests: Doing UNION

When you want to query potentially thousands of tables, it would

be cool to run a server-side UNION over the queries.

But UNION is optional. I need hedging code:

knows_union = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-sets", "UNION")

def feed_rows(astropy_table):

for row in astropy_table:

result_rows.append(dict(zip(row.colnames, row.as_void())))

if knows_union:

feed_rows(svc.run_sync(

" UNION ".join(queries)).to_table())

else:

for query in queries:

feed_rows(svc.run_sync(query).to_table())

6

But It Works, Doesn’t It?

Sure, you can write code like that. But:

• Complicated sensing

(get_tap_capability().get_adql().get_feature oh my)

• duplicate code

• complicated injection of common code (the inner feed_rows

function)

Mitigation: require as much as we can; we can (in general) make

new requirements in minor versions. We just cannot drop them.

And talk to data publishers so new standards (in this case, ADQL

2.1) propagate faster.

7

Unit Coversion

We want a common result schema, including units.

It would be great if we could just say

SELECT IN_UNIT(<pmra-column>, ’mas/yr’) as pmra...

– but IN_UNIT is optional, too, so again: Multiple code paths.

At least this is not unreasonably difficult to do on the client side.

8

Casting

When you do UNIONs, you quickly run into errors like these:

pyvo.dal.exceptions.DALQueryError: Field query: UNION types integer

and text cannot be matched LINE 1: ...S(12), RADIANS(13)), RADIANS(0.1))))

UNION SELECT localid AS...

This is because row identifiers sometimes are strings, somtimes

integers. This would be easily fixed like this:

SELECT CAST(<identifier-column> AS TEXT) AS identifier

Except: CAST is optional.

9

Another Feature Switch

knows_cast = svc.get_tap_capability().get_adql().get_feature(

"ivo://ivoa.net/std/TAPRegExt#features-adql-type", "CAST")

for dest_name, ucd, unit, type in RESULT_SCHEMA:

if type and knows_cast:

select_clause.append("CAST({} AS {}) AS {}".format(

perhaps_quote(fieldname_with_ucd(ucd, db_table)),

type,

dest_name))

else:

Don’t cast and hope for the best

select_clause.append("{} AS {}".format(

perhaps_quote(fieldname_with_ucd(ucd, db_table)),

dest_name))

(ok: in practice services that know UNION know about CAST,

too).

10

Conclusion

• Rather have fewer features than optional ones

• Don’t be case-insensitive

• Have task forces talking to data providers, advising them on

how to upgrade. Let’s have less of ancient versions

complicating clients forever. P3T, do you hear me?

• Be a bit faster to fix non-compliant services

• Feature discovery is nice. Not having to do it is nicer

11

See Also

Demleitner, M., Heinl, H. and Wambsganss, J. (2024), ‘Using the virtual

observatory’, Lecture notes for a course given at Universität

Heidelberg, summer semester 2024.

doi:10.21938/avVAxDlGOiu0Byv7NOZCsQ,

https://docs.g-vo.org/vocourse.

12

https://doi.org/10.21938/avVAxDlGOiu0Byv7NOZCsQ
https://docs.g-vo.org/vocourse

