

# IVOA and High-Energy Gamma-Rays: Ground-based IACTs

The perspective of CTAO, HESS, and beyond

Karl KOSACK
CEA Paris-Saclay / CTAO



- 1. Differences?
- 2. Discoverability
- 3. Data Models
- 4. Observation Planning



### Characteristics of IACTs\*

#### **"Event"-counting instruments**

- measure Energy, Position, Time of individual photons, [and likelihood]
- but also from irreducible cosmic ray detections
- ◆ Data Cubes: 1D-5D! (image, lightcurve, spectrum, spatial-spectro cube, spatial-time cube, spatial-spectral-time) + optional likelihood axes
- ◆ Source models are also F(ra, dec, E, t)

#### **Pointed Instruments**

- ◆ Alt/Az mounts
- ◆ Track Ra/Dec → (field rotation) or can "drift" in fixed Alt/Az
- ◆ Complex pointing patterns: "wobbles" to avoid source at center, survey grids, etc.
- ◆ Atmosphere is part of instrument → "GTI"-like intervals linked to different instrument response functions

#### **Energy-dependent optical characteristics:**

- → Field of view: 5-20°
- ◆ PSF: 0.1 0.01°
- Performance varies with offset from center, zenith/azimuth angle, atmosphere changes,

**Many "instruments":** subarray choice and analysis configurations  $\approx 10 \rightarrow \infty$ 



## From Events → Physics

**Need additional linked information...** 

### **Instrumental Response Functions (IRFs)**

- ◆ Matrices to transform between counts in region → Flux
- ◆ Derived from detailed simulations + observations
- ◆ Events ⊗ IRFs → Fluxes (Images, Spectra, Lightcurves, ...)
  Typical IRF Dec

### Provenance important here...

#### **Typical IRF Decomposition:**

- Effective Collection Area (efficiency)
- Energy Migration (E<sub>true</sub> → E<sub>reco</sub>)
- PSF ( $P_{true} \rightarrow P_{reco}$ )
- Background Model (subtractive)

- 1. Differences?
- 2. Discoverability
- 3. Data Models
- 4. Observation Planning

### Data Discoverability

#### Current Instruments:

- Catalogs: HESS, VERITAS
  - → VO via HEASEARC
- Surveys:
  - HESS Galactic Plane: VO image access
- Proof-of-concept event-level:
  - small sample of public DL3 HESS data (no IRFs) available via TAP

#### ◆ CTAO:

- Observation Catalog:
  - ObsCore compliance
- Science results (quicklook and user data?):
  - hope for full VO access via TAP services



- 1. Differences?
- 2. Discoverability
- 3. Data Models
- 4. Observation Planning



### CTAO Data Model













#### Science-Ready **Products** DL3

Binned Science **Products** DL4 Advanced Science **Products** DL5 High-Level Catalog **Products** DL6

**Event Lists** 

Counts, Exposure, Background Data Cubes

Flux Data Cubes Source Catalog

Instrument Response **Functions** 

Excess, Significance Data Cubes

Likelihood Data Cubes Source Component Catalog

**Instrument Monitoring Tables** 

Sky Regions

**Model Fit Metrics** 

Time Intervals (stable, good)

Observation Catalogs /

Coverage Maps

Sky Models

Data Cubes

Space

- Sky Image (2D Space)
- Spectrum (1D Energy)
- Light Curve (1D Time)
- Space-Energy Cube (3D)
- Space-Time Cube (3D)
- Space-Time-Energy (4D)

Note some dimensions may be sparse or unevenly spaced



### Science Data Formats

High-level data models driven by CTAO, but shared by the VHE community!

#### **♦ GADF:** Gamma-ray Astronomy Data Format

- FITS-based Data format created by IACT community
- Inspiration from existing X-ray standards (e.g. OGIP)
- No formal model, ad-hoc set of standards
- Only partial coverage of CTAO data model, and needs improvement

#### ◆ VODF: Very-high-energy Open Data Format (under development)

- evolution of GADF, To be model-driven, verifiable
- Wider scope of instruments with similar needs:
  - IACTs (CTAO, HESS, MAGIC, VERITAS...),
  - WCTs (HAWC, SWGO,...; wide-field water-Cherenkov)
  - Neutrino telescopes (km3Net, ...)





| Facility  | Category                  |
|-----------|---------------------------|
| ASTRI     | Pointing γ-ray instrument |
| СТАО      | Pointing γ-ray instrument |
| FACT      | Pointing γ-ray instrument |
| Fermi-LAT | Slewing γ-ray instrument  |
| HAWC      | Slewing γ-ray instrument  |
| H.E.S.S.  | Pointing γ-ray instrument |
| IceCube   | Neutrino detector         |
| KM3Net    | Neutrino detector         |
| MAGIC     | Pointing γ-ray instrument |
| SWGO      | Slewing γ-ray instrument  |
| VERITAS   | Pointing γ-ray instrument |

#### Work currently stalled for technical reasons

#### How to define down a model that supports:

- ◆ Automatic documentation with diagrams
- ◆ Validation (at least FITS)
- ◆ Tables with rich column metadata
- Cubes that support our IRFs
- Units, UCDs, descriptions,
- → Relationships! (not just structure)
- mapping to FITS (headers, structures, standards) and IVOA standards?

#### Things we've tried:

- → Pure documentation / UML diagrams
- FITS TPLs (not sufficient)
- ◆ ASDFSchema / JSONSchema (ran into missing features)
- ◆ Custom in-house prototypes
  - FITSSchema (used for GADF, but needs improvement)
  - Prototype based on Pydantic

#### are we missing something?



### Provenance

- Reproducibility a top-level requirement of CTAO
  - IVOA VOProv Developed by CTAO members!
  - Parts included in our Data Product metadata...
  - Still need to see at what level of detail we apply for pipeline workflows
    - likely to be part of our Workflow Management
       System
    - connection to CWL standards, etc.

- 1. Differences?
- 2. Discoverability
- 3. Data Models
- 4. Observation Planning



# Scheduling for CTAO

#### Schedules are similar to other instruments:

- ◆ Long-term schedule (at start of Observing Year)
- → Medium-term schedule (≈monthly updates)
- Short-term schedule (< Daily)</p>
  - re-generated during observations
  - Adapt to changes in weather, hardware, real-time analysis results

### **Under development**

- → automatic and constraint based, solver realtime-rescheduling possible
- → Detailed data model model (linked also to Proposal model)
- Evaluation of IVOA model (only recently discovered)



### Observation Coordination

#### **Current instruments:**

- MoUs and human interaction
- For some campaigns, sharing of "observing slots"

#### **CTAO** (intentions/wishlist):

- ◆ Automated schedule sharing for ToO/MWL coordination
- use standardized model and platform for sharing (ObsLocTAP?)
  - Currently evaluating standards
  - Mapping to our preliminary data model
  - Defining policies
  - Discussing with other instruments



Science Alerting

#### **Receive and Send:**

- **♦** GCN
- ♦ VOEvent (2.0)
- ◆ Astronomer's Telegrams
  - sufficient for many!

#### Criteria:

- ◆ Inputs from high-energy astronomy , GRBs, neutrinos, cosmic rays (e.g. ICECube), **Gravitational Waves**
- → Visibility window

#### Followups:

- ◆ Automatic (e.g. GRBs)
- → Human-in-the-loop
- Complex pointing strategy (e.g. GWs)
- HESS Alert System (2022, A&A)
- CTAO Transient Handler





# Backup info



### Event-counting instruments

**"Events":** detections of a single *photon* or *cosmic ray* background particle

- ◆ space + time (i.e. "event") info
- + other associated parameters
- → ≈ 10,000 events/s for CTAO!

#### **Event = Photon?**

- Dominated by irreducible background.
- ◆ We can't say "photon list" (but analogous!)

#### **Confusion: Event ≠ Transient Source outburst**

- ◆ Event → Cherenkov Event:
  - detection of photon or background
- ◆ Alert → Transient Event
  - high-level analysis of many Cherenkov Events, transformed into a flux exstimate....



Figure 2.2 – UML Diagram of the DL3/Event Data Model.

CTAO DL3 Data Model Specification, v1b



### Data Formats and Models Overview

|                                  | Instrumental, internal →                                                                               |                                                         |                                                                                                                    | Disseminated to users →                                                                                                                       |                                                                                |                                                                     |                                                                                                      |
|----------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                  | <b>DL0:</b><br>Raw Archived                                                                            | DL1:<br>Reduced<br>Instrument                           | DL2:<br>Reconstruct-<br>ed showers                                                                                 | DL3:<br>Science-<br>Ready                                                                                                                     | DL4: Binned Science                                                            | DL5:<br>Advanced<br>Science                                         | DL6:<br>High-level                                                                                   |
| Primary /<br>Example<br>Contents | Per-telescope raw event waveforms                                                                      | Per-telescope processed event images and image features | <ul> <li>reconstructed<br/>event<br/>parameters<br/>(energy,<br/>position,<br/>classification<br/>info)</li> </ul> | <ul> <li>γ-like event lists         (time, position, energy)</li> <li>associated IRF matrices</li> </ul>                                      | <ul> <li>data cubes in<br/>instrumental<br/>units (e.g.<br/>counts)</li> </ul> | <ul> <li>data cubes in<br/>physics units<br/>(e.g. flux)</li> </ul> | <ul> <li>Source<br/>catalogs</li> <li>Observatory-<br/>produced<br/>background<br/>models</li> </ul> |
| Data<br>model<br>&<br>Format     | Current instruments:     closed: internal model, ROOT format CTAO:     open: model, FITS + HDF5 format |                                                         |                                                                                                                    | Current Instruments:     open: GADF model in FITS format     closed: proprietary formats, internal CTAO:     open: VODF* model in FITS format |                                                                                |                                                                     | Current: FITS, no common model CTAO: open: VODF*,                                                    |
| Soft-                            | Current instruments: closed: proprietary, internal                                                     |                                                         |                                                                                                                    | Current Instruments: open: gammapy                                                                                                            |                                                                                |                                                                     | *VODF will be a formal evolution of                                                                  |

CTAO:

open:science tools based on gammapy

CTAO: