
Persistent TAP Uploads in DaCHS 2.11

Markus Demleitner

IVOA Southern Spring Interop 2024, Malta Nov 14-17

DAL WG

1



Outline

• Persistent uploads?

• Table PUT, GET, and DELETE

• Metadata retrival

• CREATE TABLE

• Discovering persistent upload facilities

• Open questions

2



Persistent Uploads

TAP has always supported table uploads.

But tables are gone after a request, requiring re-uploads, making

reuse difficult and inefficient.

So, let’s give TAP users a facility to put tables into the server-side

database across requests.

3



Prior Art

• CADC has youcat; see Pat’s 2018 Interop talk: PUT-s on the

VOSI tables endpoint.

• ESAC has VOSpace-based table uploads, coming with lots of

Authz.

The present effort follows youcat somewhat, but does not overload

VOSI tables.

4

https://wiki.ivoa.net/internal/IVOA/InterOpNov2018DAL/tap-youcat.pdf


PUT, GET, DELETE

• To upload a table, do an HTTP PUT with a VOTable payload

to user_tables/<table-name>

• To retrieve the server-side metadata, do an HTTP GET on

user_tables/<table-name>

• To delete a persistent table, do an HTTP DELETE to

user_tables/<table-name>

5



Slight Trouble: What to Return?

This is admittedly somewhat flamboyant right now.

• PUT returns an informative text/plain string. Redirect to the

table metadata instead?

• GET returns a VOSI table. That’s sane.

• DELETE returns an informative text/plain string.

Errors are communicated as DALI-compliant VOTables.

6



Metadata Retrieval

A GET on user_tables returns a VOSI tableset for all uploaded

tables. No support for DETAIL=min in DaCHS so far, though.

Except if you support anonymous persistent uploads (DaCHS

does): there is no way to find these once you have forgotten your

table name.

7



CREATE TABLE

I have also made an ADQL extension:

These queries return the result of the query without rows and

create a new persistent table with the rows.

8



Discovering Persistent Table Facilities

How do you find out whether a given TAP service supports

persistent uploads?

Mark Taylor on the DAL list suggested to do a GET against

user_tables. Then:

• 404: unsupported

• 403: supported (but you’re not authenticated)

• 200: supported (and you are authenticated)

This does not help to figure out whether you can upload without

auth. TAPRegExt? We could easily define a feature for that.

9



Open Questions

• How to prolong the life time of an uploaded table (current

default: one week)?

• How to create indexes on them (in particular spatial ones)?

• Authz: Do we want to make these tables shareable between

different users? [full disclosure: I don’t]

• Scaling: DaCHS has no quota on these yet, but in production

we would probably need some. How do people discover those?

10



Try it!

There’s curl calls and a jupyter notebook in our blog post on this:

https://blog.g-vo.org/a-proposal-for-persistent-tap-uploads.html

If you are running DaCHS, upgrading to 2.10.2 will let you play

with this on your own server.

11

https://blog.g-vo.org/a-proposal-for-persistent-tap-uploads.html

