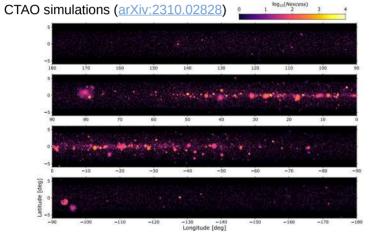


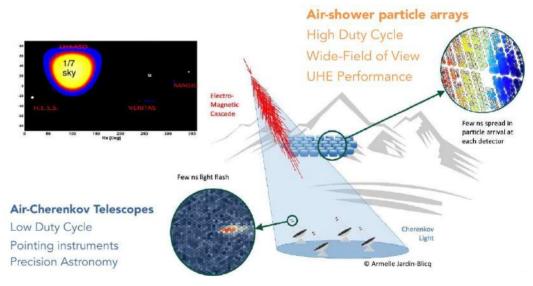
Data Model for VHE gamma-ray data and relations with IVOA standards


B. Khélifi[†] (APC, Paris) With inputs from the CTAO data model group

IVOA Interop meeting (La Valletta, Malta)

[†]: Gammapy Project Manager, VODF convener, one of the HESS DL3 release responsibles, SWH ambassador, etc

VHE γ -ray observations


Acceleration processes: relativistic particles

- Pulsar Wind Nebula, Supernova Remnants, Stellar Clusters, etc
- Active Galactic Nuclei
- Gamma-ray Bursts
- Etc

VHE γ-ray detection

Atmospheric showers

→ Counting experiments

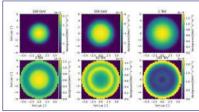
• One event = One shower

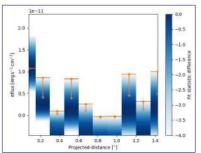
VHE data

Future experiments: observatories

- CTAO, SWGO
- Open data and their dissemination
- Some observations are proposal-driven
- Need FAIR data and Provenance information

Particularity of imaging Cherenkov telescopes

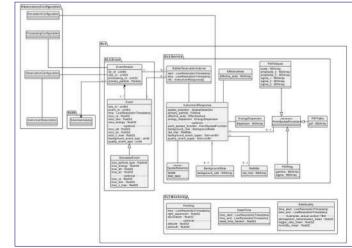

- Instrument Response Files (IRFs) are time-dependant
 - One set of IRFs per "Good Time Interval" (GTI)
- IRFs are multi-dimensional: 3D to 6D


VHE Astrophysical products

- Complex (as results of fits) \rightarrow multi-dimensional
- To be published \rightarrow FAIR

Data modelling

The past achievements


OGIP X-ray format (90^s) \rightarrow Fermi-LAT GeV format (00^s) \rightarrow GADF TeV format (10^s)

• **GADF** is from a community-driven initiative and is in use for running TeV experiments (H.E.S.S., MAGIC, VERITAS, HAWC)

CTAO work

- In-depth study of data modelling
- Community is ready to create a data format respecting the FAIR principles and following as much as possible the IVOA recommendations
- Some of them might need some upgrades

IVOA High Energy Interest Group

Talk content

1. Data levels

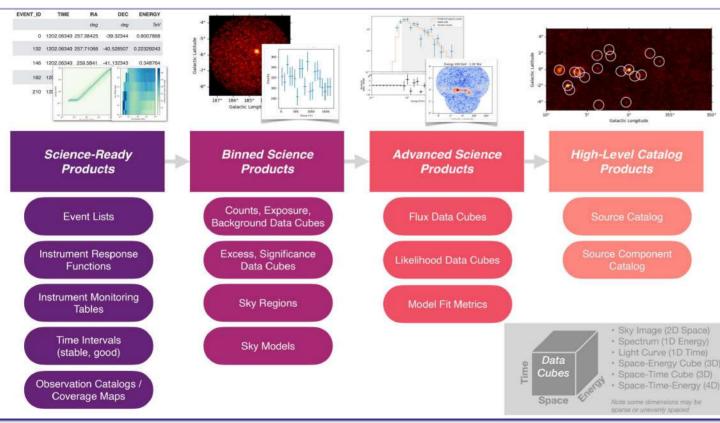
2. Data characterisation with metadata

3. Events and IRFs

4. Higher level products

1. Data levels

DL4

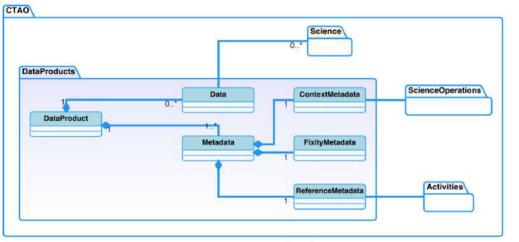

DL6

These data will be public • There are 6 other

lower levels

Correspondence with X-rays

- L1 w/o IRFs ⇔ DL3
- $L2 \Leftrightarrow DL4$ •
- $L3 \Leftrightarrow DL5+DL6$



Khélifi, B., et al., Proc. of 38th ICRC (2023)

2. Data characterisation

For each data product

CTAO top-level data model release_2a

Reference metadata

Permits unique identification associated to an activity. Contains also licence, copyrights, contact information, "release"

Contains the <u>Provenance</u> information of the last activity step

See M. Servillat talk, IVOA Sydney (05/2024)

Context metadata

Activity-specific. For an observation, link to the SchedulingBlock

Direct mapping with ObsCore

Fixity metadata

Ensure data integrity (e.g. checksum)

2. Data characterisation

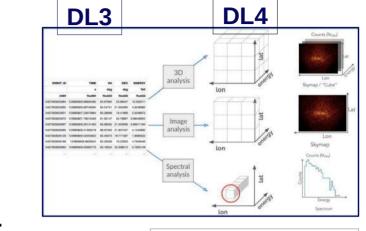
The DL3 data and ObsCore

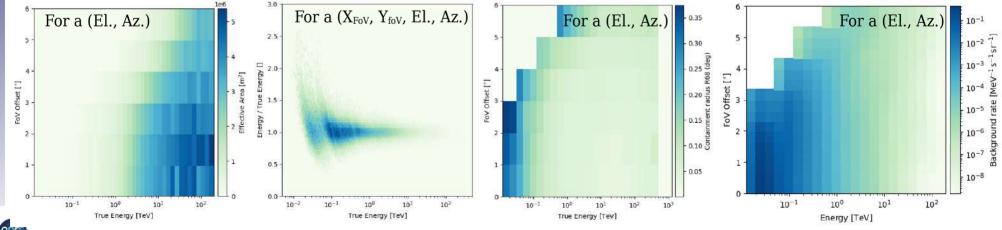
- VHE data are list of events with associated IRFs (by the event timestamp)
- How to characterise them?
 - ObsCore "dataproduct_type" ?==? "event"
 - Should the notion of "event-list" dataset be more described?
 - How to link the complex IRFs? With DataLink?
- Check whether the <u>Observation Model</u> draft, the <u>Dataset Model</u> and the <u>Dataset Metadata Model</u> draft are compliant for the VHE data releases

Some prototyping has been made

See M. Servillat talk, IVOA Sydney (05/2024)

- VO registry (TAP server) of H.E.S.S. test public data (DOI 10.5281/zenodo.1421099)
- Mapping between the "Observation" of the <u>Gammapy</u> library and ObsCore (gammapy.data.ivoa.to_obscore_table())


3. Events and IRFs


Event list into N-dimensional maps

 Binned analysis makes projections of events (and IRFs): DL3 → DL4

IRFs are stored into ND-cubes

• The four response functions , for CTAO South:

From the Gammapy documentation

3. Events and IRFs

VHE needs

Axis

- Any physical dimension (many units for a given dimension) or None (e.g. a label) •
- Defined per node or bin (linear, sparse, log, sqrt, etc is then a consequence)
 - Be able to support WCS and HEALPix coordinate systems
 - Can be cyclic (e.g. periodogram)
- Knowledge of the interpolation scheme (lin, log, sqrt)

Data Content

• w or w/o dimension (e.g. probability)

Voxel

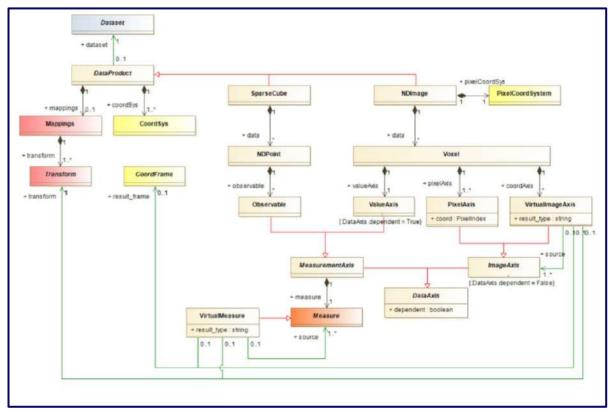
defined by the N axes, creating the ND-cubes

Metadata and Provenance

Aim to publish of FAIR ND-cubes (e.g. counts or exposure cubes as MOC)

PS: for a data model, speaking about dimension seems more

general than handling units


3. Events and IRFs

Are the VHE needs compliant with the <u>N-Dimensional Cube Model</u>

draft??

Why separating SparseCube and NDImage? Why not EventList and ND-Cube?

Where is the provenance? Is there no specific metadata?

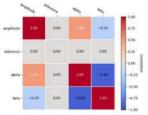
4. Higher level products

Flux points and their likelihood

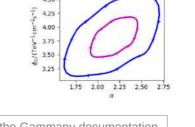
Energy (TeV)

Fitted spatial model with errors

Modelling and fitting


• Use of the forward-folding technique to extract astrophysical final products

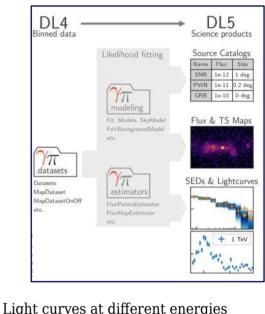
Some products

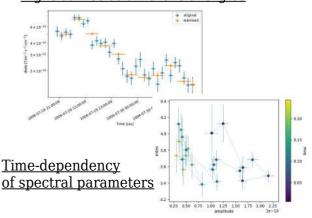

Adjusted data model

model	type	name	value	unit	• • •	min	max	frozen	link	prior
crab		index	2.2727e+00			пап	nan	False		
crab		amplitude	4.7913e-11	cm-2 s-1 TeV-1	· · · ·	nan	nan	False		
crab		reference	1.0000e+00	TeV	(i	nan	nan	True		
crab		lambda	1.2097e-01	TeV-1	(k	nan	nan	False		
crab		alpha	1.0000e+00			nan	nan	True		

And the parameter correlation

Two-fold parameter correlation




From the Gammapy documentation

B. Khélifi, IVOA Interop | Nov. 11th 2024

0'15

6*00' 5*45' 30' Galactic Longitude

4. Higher level products

Are the VHE needs compliant with the <u>N-Dimensional Cube Model</u> draft?

This draft also defines

- DataProduct
 - Has to contain a CoordSys, independently to the axes definition!?
- Surprising to mix the ND-Cube and DataProduct models into the same document...

- Dataset + dataset 0.1 DataProduct SparseOuts + coordSvs + mappings TRALIT BAT CoordSys Mappings Figure 3: Data Product detail
- \rightarrow Not (yet) compliant with all VHE use cases
 - Large variety of data products
 - Need to also handle "model parameters list", a core concept to create catalogue of sources (which is a DataProduct by itself)
 - Are the metadata enough for publication and VO dissemination?

PS: notion of Measure for a fitted value than is model and prior

dependant is not general enough

Summary and personal conclusions

VHE gamma-ray observatories are counting detectors

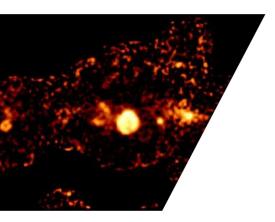
- These open data will soon populate the VO data bases (CTAO, SWGO) and maybe the archives of current experiments...
- Counting detectors \rightarrow notion of event & event-list
- Instrument Response Files are time-dependent → to be coupled to the event-list, forming together a Dataset

Many commonalities with other high-energy experiments

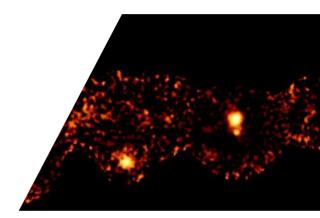
- Astrophysical VHE **neutrino observatories** (KM3NeT, IceCube)
 - The IRFs can be factorised in the same manner than the ones of gamma-ray detectors
 - Maybe less time-dependent
- X-ray and GeV observatories (XMM-Newton, Chandra, Fermi-LAT)
 - The IRFs can be factorised in the same manner than the ones of gamma-ray detectors
 - Same concept of data levels (DL_X = L_X+2)

Astrophysics usage

- Many open Science Analysis Tools
 - They should follow FAIR4RS principles to handle FAIR data → Need of updated IVOA concepts
- Multi-wavelength and multi-messenger astrophysics
 - Libraries now permit real joint fit of multi-instrument datasets \rightarrow new use cases for the models
 - Final astrophysics products should contain Provenance and precise metadata → for journals or VO


High Energy Interest Group

Will revisit the current models associated to our astrophysical use cases


Will permit to publish event lists (DL3) up to final results (DL5)

See the TD/HEIG session (yesterday): \underline{link}

Annexes

$\textbf{X-rays} \rightarrow \textbf{GeV: OGIP}$

Office of Guest Investigator Programs conventions

15 specific format recommendations (link) Corcoran et al., 1995 ADASS

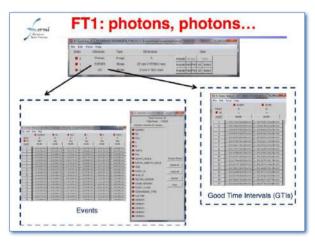
- None on the final astrophysical products
- Event list: well described, except errors, no detailed metadata
- Instrument Response Files (IRFs):
 - <u>PHA</u> (XSPEC compatible): ie RMF+ARF, ie Edisp+Area, includes statistical errors and systematics, link to the background file, GTI, metadata (e.g. creation, history)
 - <u>PSF</u> (radial or 2D): includes statistical errors, metadata (e.g. creation, history)

<u>Name</u>	Units Do	escription
TIME	`s' or `d'	The time associated with the event
RAWX	`pixel'	Raw telemetry X position of the event
RAWY	`pixel'	Raw telemetry Y position of the event
DETX	`pixel'	Linearized X position of the event on the detector
DETY	`pixel'	Linearized Y position of the event on the detector
X	`pixel'	Projected X position of the event on the sky
Y	`pixel'	Projected Y position of the event on the sky
PHA	`chan'	Pulse height analyzer' energy channel

HE γ -rays: Fermi-LAT

Formats regulated very early, and afterwards updated

- Project Data Management Plan (PDMP), 2007 (link)
- Science Data Products File Format Document (FFD), 2019 (link)


Definition of Data levels (L0 \rightarrow L3)

- like for X-rays (HEASARC continuity)
- (raw data)
- L0: 'cleaned raw data'
- L1: starting point for scientific analyses
- L2: result of science analysis tools
- L3: catalogs or compendia of DL2 data, including e.g. flux history, sce identification

In addition, ancillary data: diffuse galactic interstellar, extragalactic emission models, pulsar ephemerides

Data format

- based on OGIP + specificities (e.g. interstellar emission model, BAT data, LAT LLE)
- specific format for L2 (LC, spectrum) and L3 (catalogs)
- Metadata: s/w name and version, but not the release name, no provenance in data (but in web pages)

Almost FAIR Light compliance to IVOA standards

VHE γ -rays: GADF

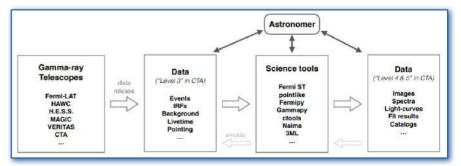
Up to mid-10's, VHE community worked in a totally competitive and closed mode

- All was private
- Except few MoUs around scientific projects

Better results Interoperability between instruments Respect of the FAIR principles

Some 'dreamers' worked towards the opening of the VHE astrophysics

- Data format standardization: open initiative 'Open Gamma-Ray Astro'
- Open Science Tools: Gammapy


The Gamma Astro Data Format

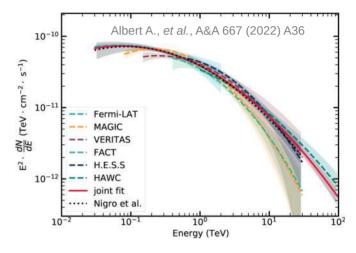
• Strongly influenced by the Fermi-LAT format (and OGIP) and serialization into FITS

DOI 10.5281/zenodo.7304668

- Same type of data levels: DL3, DL4, DL5
- Full description of the DL3: event list and IRFs

VHE γ -rays: GADF

Proved to be well suited for VHE needs and can serve as standard


As demonstrated by the joint Crab analysis with Gammapy:

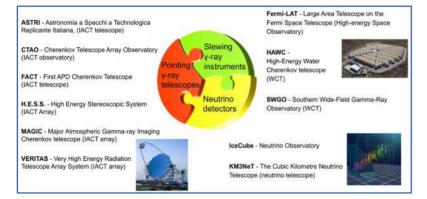
Or with astrophysical papers

HGPS, Abdalla H., et al., A&A 612 (2018) A1

But some drawbacks appear

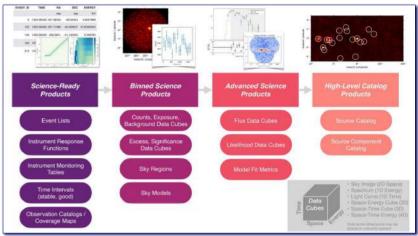
- GADF had no clear organizational structure
- No clear resolution of contentious issues
- No clear roadmap
- Not FAIR enough, no clear standards for DL4+

VHE data: VODF



Open Initiative 'Very-high-energy Open Data Format' (link)

Aims to format VHE data (gamma and neutrino)



• Officially supported by 11 experiments

 Structured with a project organization Coordination Committee, Conveners: R. Zanin, B. Khélifi

Coordination Committee, Conveners: R. Zanin, B. Khélifi Lead Editors: K. Kosack, L. Olivera-Nieto, J. Schnabel

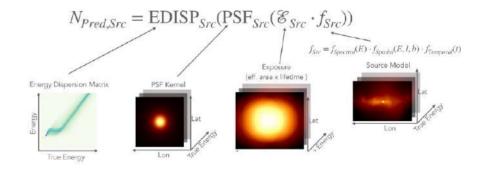
Khélifi, B., et al., Proc. of 38th ICRC (2023)

/	********	************	****************************
(* FITS FILE:			
/* VODF Level-1 Ev	ent Data		
/*			
/* EXTENSIONS SUMMARY	:		
* IDX NAME	VER	CLASS	TYPE
/*			
<pre>/* 0. EVENTS</pre>	0	OGIP.EVENTS	[TubleExtension]
/* 1. SOI	0		[TableExtension]
***************	* * * * * * * * * *	**********	*************************
/ • • • • • • • • • • • • • • • • • • •	**********		*****
/ ************************************	******		
/ ####################################	********		
	*********** ************	*****	****
/ DESCRIPTION:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****
/ DESCRIPTION: / VODF Level 1 Eve / ####################################			
/ DESCRIPTION: / VODF Level 1 Eve			

© Kosack, K. and Khélifi, B.

Poisson Log-Likelihood

Common algorithms for the libraries: Poisson Log-Likelihood


"Cash statistics": summed over all "bins"

$$\mathcal{C} = 2 \sum_{i} N_{Pred}^{i} - N_{Obs}^{i} \cdot \log N_{Pred}^{i}$$

$$\downarrow^{i: \text{ spectral channels or 3D voxels}}$$

$$N_{Pred} = N_{Bkg} + \sum_{Src} N_{Pred,Src}$$

- Bins in the spectral, spatial, temporal domain
- → Need of a "global" background model template with "correction parameters"

→ Need of the "signal" IRFs and source models

Most of the time, **Identical factorization of the IRFs** for X-rays \rightarrow UHE & neutrino exp.

Cherenkov Telescope Array


Gamma-ray observatory

- First Open VHE observatory
- $O(10)GeV \rightarrow 200TeV$
- PSF: 0.3° → 0.02°
- Observations with FoV of 3°-10° during dark mights

Full sky observations

Under construction

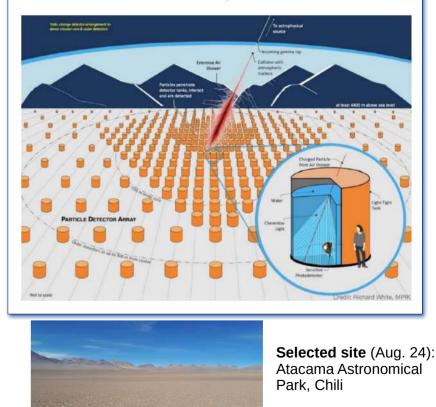
Array of the Northern site (La Palma)

• 9 MSTs (88 m²), 4 LSTs (400 m²)

Array of the Southern site (Paranal)

 2/3 LSTs (400 m²), 14 MSTs (88 m²), 42 SSTs (5 m²)

Southern Wide-field Gamma-ray Observatory


Project of new UHE observatory

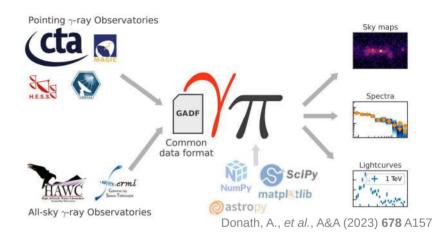
- $O(100)GeV \rightarrow PeV$
- PSF: $1^{\circ}-2^{\circ} \rightarrow 0.04^{\circ}$
- FoV of 60° during day and nights

Under Design Study

- M1 R&D Phase Plan Established
- M2 Science Benchmarks Defined
- M3 Reference Configuration & Options Defined
- M4 Site Shortlist Complete
- M5 Candidate Configurations Defined
- M6 Performance of Candidate Configurations Evaluated
- M7 Preferred Site Identified
- M8 Design Finalised
- M9 Conceptual Design Report Complete

Water Cherenkov Detector Ex: HAWC, LHAASO

The project Gammapy



Open Python analysis library

- Uses data written in the GADF format
- Inserted into the Python ecosystem
- Respecting the FAIR4RS principles
- Making multi-instrument joint analyses

Open Research Software

- Open contributions within an open organisation with an open governance
- Reference library for the VHE gamma-ray astronomy
 - Selected as core library of the open Science Analysis Tool of CTAO
- Well recognized : jury's prize of the CoSO (2022)

