
Image Metadata in Container-based
Science Platforms

IVOA Interop, Malta, Nov 2024

Brian Major1, Saurabh Mookherjee2, Rajesh Tamhane2, Dustin Jenkins1,
Shiny Brar1, Sharon Goliath1, Sebastien Fabbro1, Chris Willott1, Toby
Brown1

1 Canadian Astronomy Data Centre, NRC
2 Thoughtworks India

Agenda

> Background and Objectives
> Image Discovery
> Interactive Container Execution
> Summary and Questions

Container-based Science Platforms

● Definition: Containers vs Images vs Software?

● Definition of Container-based Science Platforms:

○ OCI (eg Docker) containers are the 'code' in 'code-to-data'

○ Containers are pulled to the compute environment and executed

○ I/O to target data is optimized in the compute environment

● Examples: CANFAR, Rubin Science Platform, ESA DataLabs, SciServer, Rosetta,
and others…

Why strive for Interoperable Platforms?

● Healthy Implementation Diversity

○ Unrealistic to expect same platform technology and implementations

○ Standards and API based approach allows for individual operational and
infrastructure management and optimizations

● Focus on Science

○ Sets the "platform" for astronomy software development: containers.

○ These containers can be shared amongst the entire astronomy community

○ New projects have a head start – just deploy a standard platform.

CANFAR

● Executes containers in Kubernetes - interactive and batch modes

● Handles all Authentication, Authorization, Identity

○ Single OpenID Connect login to portal

○ POSIX uids / gids mapped to containers and storage at runtime

● Astronomy/research specializations:

○ GPU scheduling, CARTA, Firefly (soon)

○ Applications: CASA versions 3.4.0 - 6.3.3, TOPCAT, Aladin, DS9, Visivo, etc..

● Workflow support coming

● Helm chart installation aims to allow for infrastructure variance

Use Cases for Interoperability
● Science Reproducibility

○ Want to share and use the exact same software (the container images) on data
in different locations (different instances of science platforms)

● Enable Container (and associated software) discovery

○ Should be able to find and query for containers based on certain criteria (image
metadata)

● Consistent User Experience, and support Distributed Programmatic Execution

○ Don't require container or execution modifications for specific platforms

○ Allow containers to be hosted at different image registries (eg dockerhub,
gitlab, harbor)

Aspects of Platform Interoperability

● Authentication and Authorization

● Specifying container resource requirements (RAM, GPU, etc…)

● Expectations of data location and access

● Allow for the discovery and selection of containers/images across
registries

○ Alternative: CVMFS – not discussed here

● Compatible container execution across platforms

○ Batch Execution - easy: command and arguments built in, or
provided

○ Interactive - more difficult…

Image Discovery

Image Discovery from the CANFAR Portal

Standard image uri format contains some
info:

host/[namespace]/repository:tag

But not enough, also need:
- description
- author
- software
- use and data format
- etc…

Image Discovery from the CANFAR Portal

Image Listing through Registries
● Looking for something like the search functionality on PyPi, but for containers.

● Open Container Initiative (OCI) Distribution Specification (REST API and command line):

○ Optional API Extension supports listing of images in 'repository'

● Image Listing supported (HTTP REST APIs) by:

○ harbor

○ quay.io

○ docker registry v2 API - an optional extension to the API.

● But all slightly different… projects vs catalogs vs repositories

○ Limited metadata returned

○ Not queryable

(Single) Image Metadata through Registries
If you know the image URI…

● Standards and tools around querying metadata for a single image

○ Two standards: OCI Image Registry, Docker v2

○ Tool skopeo, can inspect metadata from images hosted in all repositories

■ (but can't list images…)

● Metadata can be added to images in different ways: ENV vars, image labels, manifest
annotations

● Existing images can be modified to include metadata

○ Build time with metadata in Dockerfile (ENV vars, labels)

■ Build time (manifest annotations)

Interactive Container Execution

User Experience from the CANFAR Portal

https://ws-uv.canfar.net/session/notebook/z0z41t2u/lab/…

Interactive Container Execution
● Docker comparison

○ 'docker run -it' – but web access, not shell access

○ or 'docker run', and access URL just shown in log output

● (CANFAR) Science Platforms need:

○ Access URL and path
■ some web tools can figure this out dynamically
■ some web tools need to be told where they will be running
■ some need to run without a path! (cannot support)

○ Port(s)
■ to discover the port(s) being used; or
■ to specify the port being used (doesn't work when multiple)

● Sometimes this info can only specified on container startup

'Type' identifies container characteristics
● Not needed for batch job execution - use Dockerfile CMD or API param

● Characteristics defined by 'Type':

○ The startup script – often controls the path and port

○ The ingress rules – external to internal URL rewrites

● "Contributed" type

○ Attempt to standardize expectations of port and path of interactive
containers

○ Works out-of-the-box for some (vscode, pluto, …)

○ Does not work for others (JupyterLab, NoVNC, …)

Summary and Questions

Summary

● Discovery

○ Listing images - no standard is registry APIs

■ Most implementations support it over HTTP
■ Complex, one-time querying not possible anywhere

○ For single images, a number of OCI options exist for adding metadata

● Execution

○ A custom startup script is sometimes required

○ A custom ingress is sometimes required

Questions - Image Discovery

● How can we list and query images metadata across registries?

● Should we use metadata in the OCI specification?

○ Enough to support an Image metadata model?

● Or should metadata be decoupled and made available through TAP?

○ If so how do you reference the images, and prevent them from being
disconnected?

○ Like VO data/metadata approach, but more volatile and less curated?

Questions - Interactive Execution

Where to put the details of startup and web access?

Options:

1. Well-known set of types, param provided by users (current CANFAR model)

2. Startup script and access information provided by users/clients?

3. Rules on how interactive containers are built?

a. "Contributed type" - Only works for some, cannot influence container builds
from other research communities (eg Jupyter)

4. Metadata attached to containers specify startup and access rules?

Prototyping General Image Access in CANFAR

For now…

● No listing from repo
● Metadata coming
● Supports all registries
● Supports proprietary

image access
● 'type' remains and is

supplied by user

Thank you
brian.major@nrc-cnrc.gc.ca

nrc.canada.ca • info@nrc-cnrc.gc.ca

https://nrc.canada.ca/en/
mailto:info@nrc-cnrc.gc.ca

