
James Tocknell

SSO-next-based approach
to allowing non-browser

VO clients to use
OAuth 2.x/OIDC

AAO, Macquarie University

What is this (ivoa-oauth)?
● SSO-next uses standard HTTP headers to handle auth discovery (see

previous talks)
● ivoa-oauth aims to slot into the SSO-next framework a solution for OAuth 2

(and OpenID Connect which builds on it), by providing three missing parts:
○ Discovery
○ Bootstrapping client credentials
○ Setting a baseline for non-browser clients

● I’m open to changing things if it makes it easier to implement:
○ Even the name, though I’m going to use ivoa-oauth during this talk :)

● There’s a mailing list discussion where I posted an initial version of this:

http://mail.ivoa.net/pipermail/grid/2024-October/003211.html

http://mail.ivoa.net/pipermail/grid/2024-October/003211.html

Aims (as per my initial email)
1. Allow use of existing off-the-shelf OAuth 2.x/OIDC authentication providers

a. This implies minimal changes to any of the standard flows/grants
2. Must work for non-browser clients

a. Non-browser clients should not be required to call out a browser, nor run a web server for
redirects (this covers situations where clients are running on a remote server or are otherwise
unable to contact a browser directly)

3. Fit in with SSO-next
a. This could either go into SSO-next directly, or be published as a separate note

Simplified OAuth 2 system

Client Authorization Server

Resource Server

(1) Send client ID + extra info based on
grant (i.e. login method) type (multiple
round tips may be required)

(2) Get back access token

(3) Put access token in header to authenticate

Why can’t we just use OAuth 2/OIDC?

● No standard way to go from resource server to authentication server
○ Covered by SSO-next + discovery endpoint (covered in next slide)

● Complications getting client ID in a federated system like the VO
○ Handled by the bootstrapping endpoint

● OAuth 2/OIDC in non-browser clients
○ Easiest to fix, we specify the minimum required RFCs.

● Use www-authenticate to specify discovery endpoint to use
○ This is following SSO-next, exact syntax TBD
○ www-authenticate: ivoa-oauth discovery_url="https://<url of VO discovery service>"

● Discovery endpoint (GET only, returns JSON):
○ registration_url: endpoint for getting client ID
○ allowed_domains: what domains does do the access tokens work for
○ Additional discovery metadata (either in the document, or via discovery urls) includes

supported grants and additional endpoints for actual OAuth/OIDC flow
● We could either specify that the metadata be included in the JSON response,

or use the OIDC discovery mechanism (uses .well-known) and/or the OAuth 2
discovery mechanism (basically same response as OIDC discovery), both
could work.

Discovery

Bootstrapping client credentials (a.k.a “registration”)
● Use RFC 7591/OpenID Connect Dynamic Client Registration as a basis

○ OAuth 2 and OIDC are basically the same here
● There are likely complications with arbitrary clients talking directly to the client

registration endpoint on your authentication server, so this is acting as a proxy
to make policy decisions (e.g. allowed grant types)

● We can also move some of the many optional parameters to required
○ I suggest client_name and grant_types

● This avoids embedding in client IDs into clients, which then are shared and
become meaningless; or requiring a “VO client ID” fixed string which some
systems may not be able to handle

Non-browser clients
● RFC 8628 a.k.a the Device Authorization Grant is the best way currently for

non-browser clients to get an access token
○ This is the “scan a QR Code on your TV” grant

● Get back a URL from the authorization server, give it to the user and poll it for
the access token

● The user then logs in, and the access token is available from the URL
● Part of Web Authorization Protocol (oauth) IETF working group, though not in

the OAuth2 RFC nor OIDC standards, but still widely implemented it seems
● ivoa-oauth would require RFC 8628 to be provided by authorization

servers

https://datatracker.ietf.org/wg/oauth/about/

Questions/Discussion Points
● What metadata do we want on the discovery endpoint/do we defer to existing

discovery endpoints?
● What format is allowed_domains in?
● What metadata do we require for registration?
● Are there any parts of the registration process that concern you?
● Do we require OIDC, or is OAuth 2 enough (given we’re not using any of the

profile endpoint information)?
● Do we care about the access token contents (I’d argue no, clients should treat

them as opaque)?
● Do we use Bearer or something else?
● The name ;)

Useful links
● RFC 6749: The OAuth 2.0 standard
● RFC 6750: Bearer usage
● OpenID Connect Core 1.0: The base OIDC standard
● RFC 8628: The Device Authorization Grant
● RFC 9635: Grant Negotiation and Authorization Protocol (OAuth 2.x

replacement, only published last month)

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/rfc6750/
https://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/rfc8628
https://datatracker.ietf.org/doc/rfc9635/

Use of JSON
● Given the pre-existing use of JSON in the OAuth/OIDC ecosystem, JSON

was chosen as the format used to avoid bringing in any additional
dependencies.

Avoiding use of existing discovery and client
registration protocols
Given that there is substantial overlap with the existing discovery and client
registration protocols, why create our own. There are two main reasons, driving
mainly by the aim to allow existing authentication servers:

1. The existing providers may not implement one or both of the existing
discovery protocols, and neither of the discovery protocols cover all the
information that the VO Discovery Service does (and requiring the
modification of an existing provider to also include the required information
also has the same problem)

2. The existing providers may not implement one or both of the client
registration protocols, and existing providers generally have very basic policy
options (if any) around client registration. By specifying a minimal registration
protocol, we avoid possible issues with existing providers.

Requiring the availability of the Device Authorization
Grant
Looking to the future of OAuth 2.x, where the Implicit Grant and the Resource
Owner Password Credentials Grant are being removed, the Device Authorization
Grant is the only standardised grant that works outside a browser. Hopefully new
standardised grants are developed and supported which address the need to
authenticate without a browser while being both secure and usable.

