HIPS3D and MOCs Progress Report

Görlitz – IVOA Interop Oct 2025

Pierre Fernique,

Thomas Boch, Mark Allen, Matthieu Baumman, Caroline Bot, François-Xavier Pineau [CDS], Thomas Robitaille

HiPS3D tools before summer

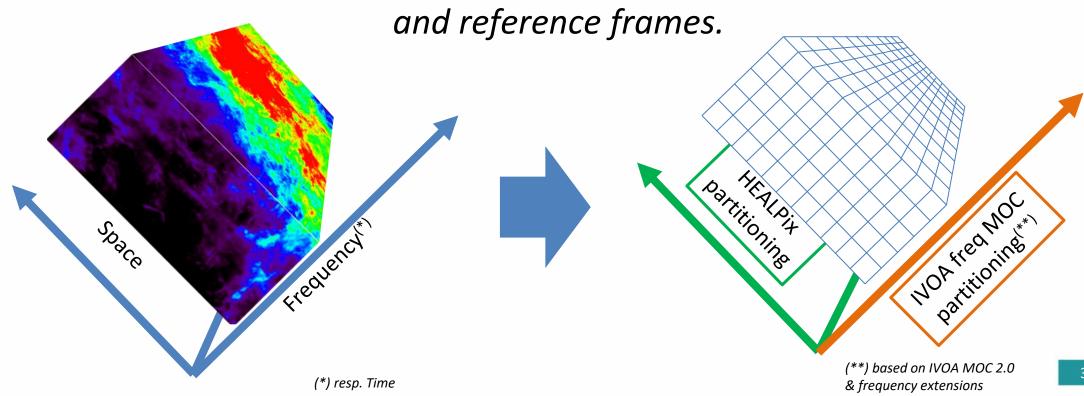
June 2024

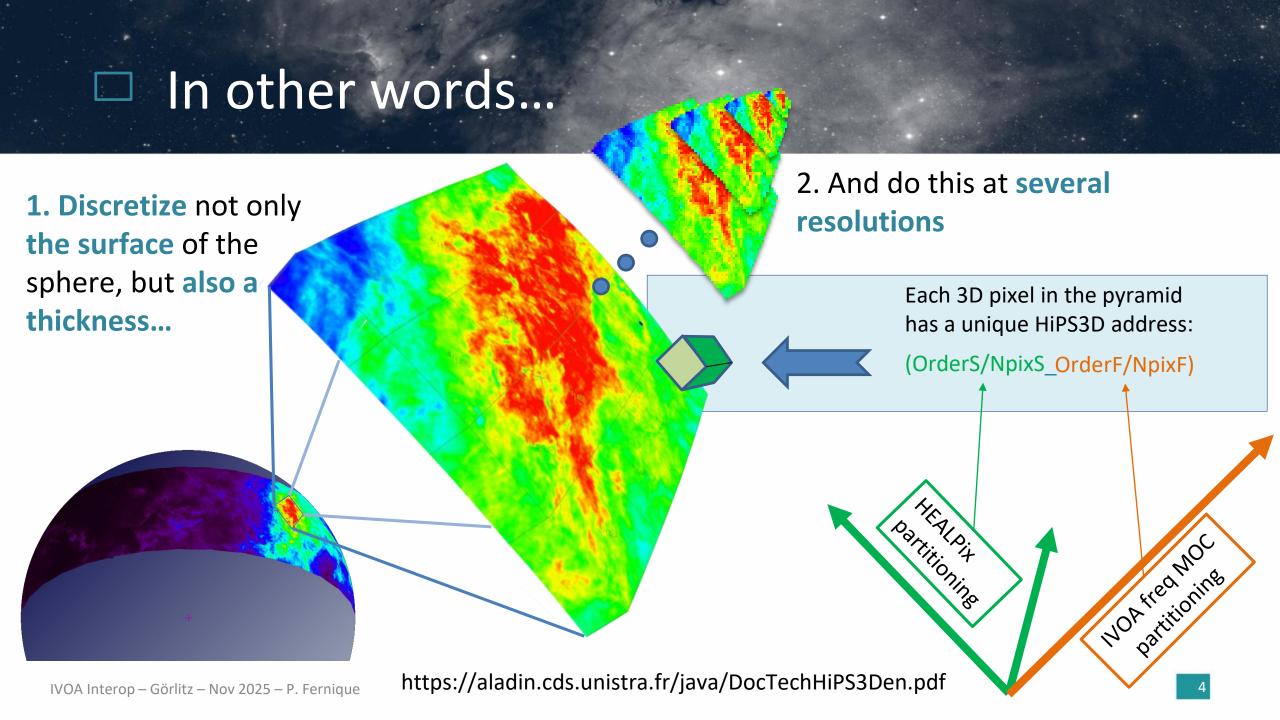
12
months

June 2025

Hipsgen: HiPS generation (prototype)

Aladin Desktop: Standalone HiPS visualization (prototype)




HiPS3D idea reminder

Extend the current HiPS towards a HiPS 3D

i.e. use a hierarchical partition in each physical dimension and based on absolute physical units

IVOA frequency MOC: Where are we?

☐ The challenges

- Reminder: The MOC only handles 64-bit integer lists
 - Space: HEALpix indices
 Time : JD in μs for time
 - Energy: ??
- Constraints
 - Amplitude large enough to describe the observations
 - Good accuracy whatever the regime
- Energy
 - Difficult to code/represent on a linear axis

IVOA May 2023 - P. Fernique

- The original idea: 2023 Bologna talk
 « F-MOC: Towards a frequency MOC? » Fernique & al.
- No MOC standard evolution yet since this date

- ☐ The idea (F.X.Pineau & B.Cecconi)
- Use frequencies
- Map values as a logarithmic expression, using the same principle as the coding of real numbers : mantissa and exponent
 - 52 bits for mantissa
 - 8 bits for exponent (not 11)
 - Save 4 bits for signature

Exponent Mantissa 8 bits 52 bits ...

Signature

4 bits available

IVOA May 2023 - P. Fernique

The Frequency Discretisation magic formula | long getHash(double free long free bits = Double free bits = Double

- Map values as a logarithmic expression, using the same principle as the coding of real numbers: mantissa and exponent
- Very Fast mapping
- Resulting amplitude (in Hz)
 - FREQ_MIN = **5.048709793414476e-29**
 - FREQ MAX = **5.846006549323611e+48**
- MAX_ORDER = 59

```
long getHash(double freq) {
    long freq_bits = Double.doubleToLongBits(freq);
    long exponent = (freq_bits & F64_EXPONENT_BIT_MASK) >> 52;
    exponent = (exponent - 929) << 52;
    long hash = (freq_bits & F64_BUT_EXPONENT_BIT_MASK) | exponent;
    return hash;
}</pre>
```

```
double getFreq(long hash) {
    long exponent = (hash & F64_EXPONENT_BIT_MASK) >> 52;
    exponent = (exponent + 929) << 52;
    long freqBits = (hash & F64_BUT_EXPONENT_BIT_MASK) | exponent;
    double freq = Double.longBitsToDouble(freqBits);
    return freq;
}</pre>
```

This solution does the job But...

Frequency HiPS3D impact

- HiPS3D is fully based on FMOC
- HiPS3D tiles have a spatial surface and a frequency thickness
- In FITS encoding: very useful to have spatial-frequency WCS
- Unfortunately, the WCS standard hasn't covered the case of bit shift expressions.

```
tile generated by Aladin/Hipsg
```

T.Robitaille summer proposal

- A 'simpler' logarithmic expression
- Still fast mapping
- Amplitude (in Hz)
 - FREQ MIN = 1e-18
 - $FREQ_MAX = 1e+38$
- MAX_ORDER=51
- + a WCS solution

```
CTYPE3 = 'FREQ-LOG'
CUNIT3 = 'Hz '
CRPIX3 = -813471
CRVAL3 = 1.0E-18
CD1_3 = 0
```

def freq2index(freq):
 return log(freq) - log(FREQ_MIN))
 / (log(FREQ_MAX) - log(FREQ_MIN)) * 2^ORDER))

```
CTYPE = 'FREQ-LOG'
CUNIT = 'Hz'
CRVAL = FREQ_MIN
CRPIX = 1-index*tileDepth
CD3_3 = CRVAL * log(FREQ_MAX
/ FREQ_MIN) / 2^ORDER
```

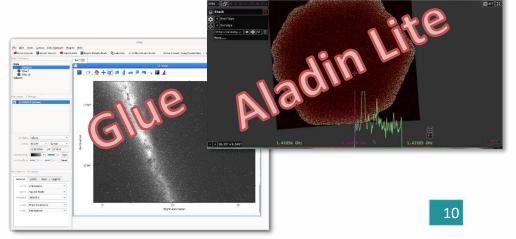
Summer discussion & Conlusion

Tests comparing two spectral index encoding methods for HiPS3D show that the logarithmic approach is preferable to the mantissa—exponent method. It simplifies WCS handling in HiPS headers, and its drawbacks (slightly slower, fewer index levels, no bijectivity with doubles) have no practical impact. It still exceeds current and future spectral resolution requirements, so the logarithmic method is recommended

The new FMOC discretisation function

```
double FREQ_MIN = 1E-18;
double FREQ_MAX = 1E+38;
int     MAXORD_F = 51;
double CTE = Math.log10( FREQ_MAX/FREQ_MIN );
double POW2MAX = 1L << (MAXORD_F+1);

long getNpix(double freq) {
   return (long) ( ( Math.log10(freq/FREQ_MIN) / CTE ) * POW2MAX );
}


double getFreq( long npix ) {
   return FREQ_MIN * Math.pow( 10, CTE * npix / POW2MAX );
}</pre>
```

HiPS3D new tools collection updated after summer decision

• **Hipsgen:** HiPS generation (public version)

- Aladin Desktop: Standalone HiPS visualization (version beta 12.6)
- Aladin Lite: Web HiPS visualisation (prototype v3.7)
- Astropy/reproject/Glue: Generation & visualisation [T.Robitaille]
- Hips2fits3D: Server side extraction of any cube at any resolution from a HiPS3D
 -> See T.Boch's ADASS poster

What about IVOA MOC & HiPS standard?

- HiPS & MOC are based on the same concepts, which must remain consistent.
- HiPS3D is progressing very quickly:
 - Several interoperable implementations
 - Several surveys successfully tested
 - (Highly) interested missions and archives awaiting implementation: ALMA, SKA, etc.
 - Temporal HiPS3D very promising (see TDIG session)
- Need to standardize all of this within the IVOA framework:
 - MOC2.0 -> MOC3.0 incorporating FMOC (new formula)
 - Volunteer editor: François-Xavier Pineau et al.
 - HIPS1.0 -> HIPS2.0 incorporating HIPS3D (frequency and time)
 - Volunteer editor: Pierre Fernique et al.

MOC: Multi-Order Coverage map

Version 2.0

IVOA Recommendation 2022

Working group

Applications

http://www.ivoa.net/document

test version

http://www.ivoa.net/document

Previous versions Version 1.1

> Version 1.0 thor(s)

Pierre Fernique (CDS), Ada Nebo Matthieu Baumann (CDS), Thor (EGO-Virgo), Tom Donaldson Pineau (CDS), Mark Taylor (Uni (Vera C. Rubin Observatory), Sébastien Derrière (CDS)

Editor(s)

Pierre Fernique, Ada Nebot, Da

International

Virtual

Observatory

Alliance

HiPS - Hierarchical Progressive Survey

Version 1.0

IVOA Recommendation 19th May 2017

This version:

1.0: Recommendation 2017-05-19

Previous version(s):

- 1.0: Proposed Recommendation 2017-04-06
- 1.0: Proposed Recommendation 2017-04-03
- 1.0: Proposed Recommendation 2016-11-22
- 1.0: Working Draft 2016-06-23

Interest/Working Group:

Applications: http://www.ivoa.net/twiki/bin/view/IVOA/IvoaApplications

Editor:

Pierre Fernique

Authors:

Pierre Fernique, Mark Allen, Thomas Boch, Tom Donaldson, Daniel Durand, Ken Ebisawa, Laurent Michel, Jesus Salgado, Felix Stoehr

Abstract

This document presents HiPS, a hierarchical scheme for the description, storage and access of sky survey data. The system is based on hierarchical tiling of sky regions at finer and finer spatial resolution which facilitates a progressive view of a survey, and supports multi-resolution zooming and

_

Do Apps' members agree?

Thanks!
Questions? Comments?