Unicode in VOTable
VOTable towards v1.67

Mark Taylor (Bristol)

IVOA Interop
Gorlitz

Applications WG
15 November 2025

$Id: votable.tex,v 1.21 2025/11/13 14:04:22 mbt Exp $

Mark Taylor, VOTable Future, IVOA Interop, Gorlitz, 15 November 2025 1/12

Unicode in VOTable

e Proposal
e Consequences

e Actions

Other things for v1.6

DALI xtype="strings"

Roadmap/Discussion

Outline

Proposal for Unicode in VOTable

Problems with current VOTable (<v1.5):

e datatype="char" restricted to 7-bit ASCII
e datatype="unicodeChar" restricted to Basic Multilingual Plane*, also inefficient BINARY serialization

— No emoji possible in VOTable &=

e VOTable discusses Unicode in outdated terms (using the obsolete “UCS-2" encoding)

> https://wiki.ivoa.net/internal/IVOA/InterOpJune2025Apps/unicode-notes.pdf
> https://wiki.ivoa.net/internal/IVOA/InterOpOct2014Applications/vot-unicode.pdf

Proposal: VOTable PR #71

e datatype='"char":
> 7-bit ASCII characters — UTF-8 bytes

e datatype="unicodeChar":

> UCS-2 characters — BMP-only UTF-16 byte pairs (this is just a change of terminology)
> also deprecated in favour of char

e arraysize corresponds to count of code units not characters: Required to make
> char: UTF-8 code unit = 1 octet BII.\IABY/EINARYQ
> unicodeChar: UTF-16 code unit = 2 octets serializations work

*BMP: 65536 code points covering almost all modern languages and symbols, but not emojis and some weird stuff

https://wiki.ivoa.net/internal/IVOA/InterOpJune2025Apps/unicode-notes.pdf
https://wiki.ivoa.net/internal/IVOA/InterOpOct2014Applications/vot-unicode.pdf
https://github.com/ivoa-std/VOTable/pull/71

Unicode: Consequences 1

Intended consequences of proposal at VOTable 1.6:

e Any Unicode character can be written in a datatype="char" column

> TABLEDATA: use document encoding
> BINARY/BINARY2: use UTF-8 encoding

e BMP characters can be written in a datatype="unicodeChar" column

> TABLEDATA: use document encoding
> BINARY/BINARY2: use UTF-16 encoding
> ... but don't do it, because it's now deprecated

Unicode: Consequences 2

Unintended corollaries at VOTable 1.6:

e You can't specify a string column with a fixed number of characters
> you have to specify the length of the UTF-8/UTF-16 serialization instead
> ... unless e.g. you know the column is 7-bit ASCII
e Single (scalar) datatype="char" columns can still only contain 7-bit ASCII

> ... since non-ASCII code points need multiple bytes in UTF-8

e String truncation is not straightforward
> Overlength strings may need to be truncated to fit in fixed-arraysize strings/array elements
> Such truncation has to be done carefully (not in the middle of a multi-octet UTF-8 character)
e Decoding string arrays (multi-dimensional char/unicodeChar arrays) requires unpacking to bytes then
counting code units (i.e. counting bytes) not counting characters

> This may be a bit surprising to implementors, but it's not so hard

Unicode: Backward Compatibility

New code reading existing legal VOTables

e Will read correctly

Old code reading new VO Tables

e Will mostly read them as intended
e But some problems possible with non-ASCII multi-dimensional char arrays (string arrays)

<VOTABLE version="1.6" xmlns="http://www.ivoa.net/xml/V0Table/v1.3"> NeW reader.
<RESOURCE> PR e .
<TABLE> . | places |
<FIELD name="places" datatype="char" arraysize="10x4"/> el N
z?i;iEDATA> | (0123456789, 0123456789, 0123456789, 0123456789) |
| (Valletta.., Coll. Park, Gorlitz.., Strasbourg) |
<TR><TD>0123456789012345678901234567890123456789</TD></TR> e N
<TR><TD>Valletta..Coll. ParkGorlitz..Strasbourg</TD></TR>
</TABLEDATA>
</DATA>
</TABLE> Old reader:
</RESOURCE> oo +
</VOTABLE> | places |
e e +
| (0123456789, 0123456789, 0123456789, 0123456789) |
1y .o . 13} - "
Gorlitz.."” is 10 UTF-8 code units (bytes) | (Valletta.., Coll. Park, G?rlitz..S, trasbourg) |
but 9 Unicode code points (characters) L +

Mark Taylor, VOTable Future, IVOA Interop, Gorlitz, 15 November 2025 6/12

Unicode: Implications for Implementations

Changes required by implementors of VOTable |/O libraries
e |nput:
> Code for decoding multi-dimensional character arrays (i.e. 14--dimensional string arrays) will need changing

o Unpacking array elements now requires counting bytes (code points) not characters
> Other input code: read Unicode/UTF-8 — maybe no changes?

o If you're not trying too hard in a Unicode-aware language, there's a good chance that VOTable-reading code
is doing the right thing already (reading TABLEDATA in document encoding, char BINARY/2 as UTF-8)

o If you're doing careful validation or sanitisation of VOTable input you will need to change code
(mostly: relax checks, remove special cases)

o If you're manipulating VOTables in FORTRAN 77 you may have some work to do
> No special casing required for older VOTables

— Unicode-friendly implementation is also correct for existing VOTable versions
e Output:

> Stop writing FIELDs/PARAMs with datatype="unicodeChar" (now deprecated and unnecessary)
> Remove checks for unwriteable characters in character output?

> Write character data using Unicode encoding (may have been doing that already)

> Careful writing fixed-length (including scalar) character array, i.e. string-valued, FIELDs/PARAMs

o For 1-d character arrays (scalar strings): easiest to just always use variable-length strings (arraysize="x")

o To support string arrays (can't have variable-length strings) or fixed-length strings:
byte counting not character counting now required; care needed with string truncation

Unicode: PARAM and INFO

In all VOTable versions <1.5:

e datatype="char" must be 7-bit ASCII
e datatype="unicodeChar" must be BMP-only

. everywhere, including

° BINARY/BINARY2
e TABLEDATA

e PARAM

e and even INFO:

VOTable 1.5 sec 4.8: “The INFO element is a PARAM element restricted to be of type string (i.e. datatype="char" and
arraysize="*" are implied).”

e Consequences:

> My prototype VOTable 1.6-compatible STIL now handles these “correctly”

o votlint VOTable validator reports an error
o STIL maps non-ASCII char bytes/non-BMP unicodeChar pairs to '?

> Should it do that? There's no reason for the restriction in PARAM/INFO (since binary encoding is never required)
> Should we have an Erratum for PARAM/INFQ?

http://www.starlink.ac.uk/stilts/sun256/votlint.html

Unicode: PARAM and INFO

In all VOTable versions <1.5:

e datatype="char" must be 7-bit ASCII
e datatype="unicodeChar" must be BMP-only

. everywhere, including

e BINARY/BINARY2 This is illegal:
e TABLEDATA <INFO name="location" wvalue="Gorlitz"/>
e PARAM

e and even INFO:

VOTable 1.5 sec 4.8: “The INFO element is a PARAM element restricted to be of type string (i.e. datatype="char" and
arraysize="*" are implied).”

e Consequences:

> My prototype VOTable 1.6-compatible STIL now handles these “correctly”

o votlint VOTable validator reports an error
o STIL maps non-ASCII char bytes/non-BMP unicodeChar pairs to '?

> Should it do that? There's no reason for the restriction in PARAM/INFO (since binary encoding is never required)
> Should we have an Erratum for PARAM/INFQ?

http://www.starlink.ac.uk/stilts/sun256/votlint.html

Unicode: Status

PR #71 Redefine char and unicodeChar for correct Unicode usage

e Discussion so far:

> Approved (following some edits) by Russ Allbery and Gregory D-F (Rubin)
> Discussed at Astro-CC meeting Trieste Oct 2025 (Markus, Mark T et al.)
> Approved (with some suggestions) by Tom Donaldson

> Comments from the audience?

e Implementations:

> Implemented and working in STIL (—STILTS, TOPCAT); prototype available, tests ongoing
> Will need >1 more — Astropy?

e Suggested next step:

> Post summary of proposed changes + pointer to PR to Apps list soon/now
> If no objections, merge PR soon — end Nov 20257

Unicode content in INFO/PARAM

e This hasn't had much discussion (I only realised it this month)

e Suggest to draft an Erratum to apply to all VOTable versions <1.5:
INFO and char/unicodeChar PARAM may contain unrestricted Unicode content

https://github.com/ivoa-std/VOTable/pull/71
https://www.star.bristol.ac.uk/mbt/releases/topcat/pre/topcat-full_votable1.6.jar

Other ltems

Other uncontroversial(?) things for VOTable 1.6
e Define content parameter for VOTable MIME type (#26, #15)

> Datalink recommends application/x-votable+xml; content=datalink, but content parameter is currently undefined

e Review Appendix A “Possible VOTable extensions” (#53)

> Appendix A, untouched since v1.10 (2004), has several suggestions of unclear status; remove or extract to Note?

e Some editorial issues

e ... any more?

Probably not for VOTable 1.6:

e Some suggestions without clear consensus #72, #29
e Some issues tagged v2.0 #23, #19, #17
e See also #25 — DALI issue #66 xtype="strings"

https://github.com/ivoa-std/VOTable/issues/26
https://github.com/ivoa-std/VOTable/issues/15
https://github.com/ivoa-std/VOTable/issues/53
https://github.com/ivoa-std/VOTable/issues/72
https://github.com/ivoa-std/VOTable/issues/29
https://github.com/ivoa-std/VOTable/issues/23
https://github.com/ivoa-std/VOTable/issues/19
https://github.com/ivoa-std/VOTable/issues/17
https://github.com/ivoa-std/VOTable/issues/25
https://github.com/ivoa-std/DALI/issues/66

DALI xtype="strings”

String arrays in VOTable are a pain.

e VOTable datatype char is a single character; there is no fundamental string datatype

> Encode a string as a 1-d character array

o may be fixed-length string (arraysize="8")
or variable-length string (arraysize="x")

> Encode a 1-d array of strings as a (rectangular) 2-d character array

o may be fixed-length array of fixed-length strings (arraysize="8x3")
or variable-length array of fixed-length strings (arraysize="8xx*")

o may not be array of variable-length strings (only last dimension can vary)
e But array of variable-length strings is often what you want
> Otherwise you have to count all string lengths up front
e Also: assembling string arrays into rectangular char arrays is fiddly

> especially with the UTF-8 encoding rule proposed for VOTable 1.6

<FIELD name="colours"
datatype="char"
arraysize="6x3"/>

<TD>Red... PurpleBlue.. </TD>
<TD>Green.Cyan..Black. </TD>

DALI xtype="strings”

String arrays in VOTable are a pain.

e VOTable datatype char is a single character; there is no fundamental string datatype

> Encode a string as a 1-d character array

o may be fixed-length string (arraysize="8")
or variable-length string (arraysize="x")

> Encode a 1-d array of strings as a (rectangular) 2-d character array

o may be fixed-length array of fixed-length strings (arraysize="8x3") <FIELD name="colours"
or variable-length array of fixed-length strings (arraysize="8xx*") datatype="char"
o may not be array of variable-length strings (only last dimension can vary) arraysize="6x3"/>

e But array of variable-length strings is often what you want

> Otherwise you have to count all string lengths up front

e Also: assembling string arrays into rectangular char arrays is fiddly

> especially with the UTF-8 encoding rule proposed for VOTable 1.6

Alternative: encode 1-d string arrays using delimiters

See DALI issue #66

Still experimental

Currently: delimiter “|" with some escaping mechanism

Basic VOTable reader reads string, aware VOTable reader reads array
Doesn’t help with higher-dimensional string arrays ... but they are rare

<TD>Red... PurpleBlue.. </TD>
<TD>Green.Cyan..Black. </TD>

<FIELD name="colours"
datatype="char"
arraysize="x" xtype="strings"/>

<TD>Red |Purple|Blue</TD>
<TD>Green|Cyan|Black</TD>

https://github.com/ivoa-std/DALI/issues/66

Roadmap

Suggested next steps:
e Start preparing VOTable 1.6

> Invite final mailing list comments on PR #71 (Unicode)
Prepare PRs for issues #26 (MIME type content parameter), #53 (review Appendix A)

Address editorial issues
VOTable 1.6 WD by next Interop?

>
>
>
> Lead editor: Mark T (discussed with Tom D)

e Prepare Erratum on Unicode PARAM/INFO content?
e Prototype/experiment with xtype="strings" — DALI-next?

Comments?

https://github.com/ivoa-std/VOTable/pull/71
https://github.com/ivoa-std/VOTable/issues/26
https://github.com/ivoa-std/VOTable/issues/53

