
Unicode in VOTable
VOTable towards v1.6?

Mark Taylor (Bristol)

IVOA Interop

Görlitz

Applications WG

15 November 2025

$Id: votable.tex,v 1.21 2025/11/13 14:04:22 mbt Exp $

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 1/12

Outline

• Unicode in VOTable

• Proposal

• Consequences

• Actions

• Other things for v1.6

• DALI xtype=”strings”

• Roadmap/Discussion

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 2/12

Proposal for Unicode in VOTable

 Required to make
BINARY/BINARY2
serializations work

Problems with current VOTable (≤v1.5):
• datatype="char" restricted to 7-bit ASCII

• datatype="unicodeChar" restricted to Basic Multilingual Plane∗, also inefficient BINARY serialization

→ No emoji possible in VOTable

• VOTable discusses Unicode in outdated terms (using the obsolete “UCS-2” encoding)

▷ https://wiki.ivoa.net/internal/IVOA/InterOpJune2025Apps/unicode-notes.pdf

▷ https://wiki.ivoa.net/internal/IVOA/InterOpOct2014Applications/vot-unicode.pdf

Proposal: VOTable PR #71
• datatype="char":

▷ 7-bit ASCII characters → UTF-8 bytes

• datatype="unicodeChar":

▷ UCS-2 characters → BMP-only UTF-16 byte pairs (this is just a change of terminology)

▷ also deprecated in favour of char

• arraysize corresponds to count of code units not characters:

▷ char: UTF-8 code unit = 1 octet

▷ unicodeChar: UTF-16 code unit = 2 octets

∗BMP: 65 536 code points covering almost all modern languages and symbols, but not emojis and some weird stuff
Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 3/12

https://wiki.ivoa.net/internal/IVOA/InterOpJune2025Apps/unicode-notes.pdf
https://wiki.ivoa.net/internal/IVOA/InterOpOct2014Applications/vot-unicode.pdf
https://github.com/ivoa-std/VOTable/pull/71

Unicode: Consequences 1

Intended consequences of proposal at VOTable 1.6:

• Any Unicode character can be written in a datatype="char" column

▷ TABLEDATA: use document encoding

▷ BINARY/BINARY2: use UTF-8 encoding

• BMP characters can be written in a datatype="unicodeChar" column

▷ TABLEDATA: use document encoding

▷ BINARY/BINARY2: use UTF-16 encoding

▷ ... but don’t do it, because it’s now deprecated

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 4/12

Unicode: Consequences 2

Unintended corollaries at VOTable 1.6:

• You can’t specify a string column with a fixed number of characters

▷ you have to specify the length of the UTF-8/UTF-16 serialization instead

▷ ... unless e.g. you know the column is 7-bit ASCII

• Single (scalar) datatype="char" columns can still only contain 7-bit ASCII

▷ ... since non-ASCII code points need multiple bytes in UTF-8

• String truncation is not straightforward

▷ Overlength strings may need to be truncated to fit in fixed-arraysize strings/array elements

▷ Such truncation has to be done carefully (not in the middle of a multi-octet UTF-8 character)

• Decoding string arrays (multi-dimensional char/unicodeChar arrays) requires unpacking to bytes then
counting code units (i.e. counting bytes) not counting characters

▷ This may be a bit surprising to implementors, but it’s not so hard

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 5/12

Unicode: Backward Compatibility

<VOTABLE version="1.6" xmlns="http://www.ivoa.net/xml/VOTable/v1.3">

<RESOURCE>

<TABLE>

<FIELD name="places" datatype="char" arraysize="10x4"/>

<DATA>

<TABLEDATA>

<TR><TD>0123456789012345678901234567890123456789</TD></TR>

<TR><TD>Valletta..Coll. ParkGörlitz..Strasbourg</TD></TR>

</TABLEDATA>

</DATA>

</TABLE>

</RESOURCE>

</VOTABLE>

New reader:
+--+

| places |

+--+

| (0123456789, 0123456789, 0123456789, 0123456789) |

| (Valletta.., Coll. Park, Görlitz.., Strasbourg) |

+--+

Old reader:
+--+

| places |

+--+

| (0123456789, 0123456789, 0123456789, 0123456789) |

| (Valletta.., Coll. Park, G?rlitz..S, trasbourg) |

+--+

“Görlitz..” is 10 UTF-8 code units (bytes)

but 9 Unicode code points (characters)

New code reading existing legal VOTables

• Will read correctly

Old code reading new VOTables

• Will mostly read them as intended

• But some problems possible with non-ASCII multi-dimensional char arrays (string arrays)

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 6/12

Unicode: Implications for Implementations

Changes required by implementors of VOTable I/O libraries
• Input:

▷ Code for decoding multi-dimensional character arrays (i.e. 1+-dimensional string arrays) will need changing

◦ Unpacking array elements now requires counting bytes (code points) not characters

▷ Other input code: read Unicode/UTF-8 — maybe no changes?

◦ If you’re not trying too hard in a Unicode-aware language, there’s a good chance that VOTable-reading code
is doing the right thing already (reading TABLEDATA in document encoding, char BINARY/2 as UTF-8)

◦ If you’re doing careful validation or sanitisation of VOTable input you will need to change code
(mostly: relax checks, remove special cases)

◦ If you’re manipulating VOTables in FORTRAN 77 you may have some work to do

▷ No special casing required for older VOTables

→ Unicode-friendly implementation is also correct for existing VOTable versions

• Output:

▷ Stop writing FIELDs/PARAMs with datatype="unicodeChar" (now deprecated and unnecessary)

▷ Remove checks for unwriteable characters in character output?

▷ Write character data using Unicode encoding (may have been doing that already)

▷ Careful writing fixed-length (including scalar) character array, i.e. string-valued, FIELDs/PARAMs

◦ For 1-d character arrays (scalar strings): easiest to just always use variable-length strings (arraysize="*")

◦ To support string arrays (can’t have variable-length strings) or fixed-length strings:
byte counting not character counting now required; care needed with string truncation

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 7/12

Unicode: PARAM and INFO

In all VOTable versions ≤1.5:

• datatype="char" must be 7-bit ASCII

• datatype="unicodeChar" must be BMP-only

... everywhere, including

• BINARY/BINARY2

• TABLEDATA

• PARAM

• and even INFO:

VOTable 1.5 sec 4.8: “The INFO element is a PARAM element restricted to be of type string (i.e. datatype=”char” and
arraysize=”*” are implied).”

• Consequences:

▷ My prototype VOTable 1.6-compatible STIL now handles these “correctly”

◦ votlint VOTable validator reports an error
◦ STIL maps non-ASCII char bytes/non-BMP unicodeChar pairs to ’?’

▷ Should it do that? There’s no reason for the restriction in PARAM/INFO (since binary encoding is never required)

▷ Should we have an Erratum for PARAM/INFO?

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 8/12

http://www.starlink.ac.uk/stilts/sun256/votlint.html

Unicode: PARAM and INFO

This is illegal:
<INFO name="location" value="Görlitz"/>

In all VOTable versions ≤1.5:

• datatype="char" must be 7-bit ASCII

• datatype="unicodeChar" must be BMP-only

... everywhere, including

• BINARY/BINARY2

• TABLEDATA

• PARAM

• and even INFO:

VOTable 1.5 sec 4.8: “The INFO element is a PARAM element restricted to be of type string (i.e. datatype=”char” and
arraysize=”*” are implied).”

• Consequences:

▷ My prototype VOTable 1.6-compatible STIL now handles these “correctly”

◦ votlint VOTable validator reports an error
◦ STIL maps non-ASCII char bytes/non-BMP unicodeChar pairs to ’?’

▷ Should it do that? There’s no reason for the restriction in PARAM/INFO (since binary encoding is never required)

▷ Should we have an Erratum for PARAM/INFO?

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 8/12

http://www.starlink.ac.uk/stilts/sun256/votlint.html

Unicode: Status

PR #71 Redefine char and unicodeChar for correct Unicode usage

• Discussion so far:

▷ Approved (following some edits) by Russ Allbery and Gregory D-F (Rubin)

▷ Discussed at Astro-CC meeting Trieste Oct 2025 (Markus, Mark T et al.)

▷ Approved (with some suggestions) by Tom Donaldson

▷ Comments from the audience?

• Implementations:

▷ Implemented and working in STIL (→STILTS, TOPCAT); prototype available, tests ongoing

▷ Will need ≥1 more — Astropy?

• Suggested next step:

▷ Post summary of proposed changes + pointer to PR to Apps list soon/now

▷ If no objections, merge PR soon — end Nov 2025?

Unicode content in INFO/PARAM

• This hasn’t had much discussion (I only realised it this month)

• Suggest to draft an Erratum to apply to all VOTable versions ≤1.5:

INFO and char/unicodeChar PARAM may contain unrestricted Unicode content

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 9/12

https://github.com/ivoa-std/VOTable/pull/71
https://www.star.bristol.ac.uk/mbt/releases/topcat/pre/topcat-full_votable1.6.jar

Other Items

Other uncontroversial(?) things for VOTable 1.6

• Define content parameter for VOTable MIME type (#26, #15)

▷ Datalink recommends application/x-votable+xml; content=datalink, but content parameter is currently undefined

• Review Appendix A “Possible VOTable extensions” (#53)

▷ Appendix A, untouched since v1.10 (2004), has several suggestions of unclear status; remove or extract to Note?

• Some editorial issues

• ... any more?

Probably not for VOTable 1.6:

• Some suggestions without clear consensus #72, #29

• Some issues tagged v2.0 #23, #19, #17

• See also #25 → DALI issue #66 xtype="strings"

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 10/12

https://github.com/ivoa-std/VOTable/issues/26
https://github.com/ivoa-std/VOTable/issues/15
https://github.com/ivoa-std/VOTable/issues/53
https://github.com/ivoa-std/VOTable/issues/72
https://github.com/ivoa-std/VOTable/issues/29
https://github.com/ivoa-std/VOTable/issues/23
https://github.com/ivoa-std/VOTable/issues/19
https://github.com/ivoa-std/VOTable/issues/17
https://github.com/ivoa-std/VOTable/issues/25
https://github.com/ivoa-std/DALI/issues/66

DALI xtype=”strings”

<FIELD name="colours"

datatype="char"

arraysize="6x3"/>

...

<TD>Red PurpleBlue </TD>

<TD>Green Cyan Black </TD>

String arrays in VOTable are a pain.
• VOTable datatype char is a single character; there is no fundamental string datatype (following FITS)

▷ Encode a string as a 1-d character array
◦ may be fixed-length string (arraysize="8")

or variable-length string (arraysize="*")

▷ Encode a 1-d array of strings as a (rectangular) 2-d character array

◦ may be fixed-length array of fixed-length strings (arraysize="8x3")
or variable-length array of fixed-length strings (arraysize="8x*")

◦ may not be array of variable-length strings (only last dimension can vary)

• But array of variable-length strings is often what you want

▷ Otherwise you have to count all string lengths up front

• Also: assembling string arrays into rectangular char arrays is fiddly

▷ especially with the UTF-8 encoding rule proposed for VOTable 1.6

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 11/12

DALI xtype=”strings”

<FIELD name="colours"

datatype="char"

arraysize="6x3"/>

...

<TD>Red PurpleBlue </TD>

<TD>Green Cyan Black </TD>

<FIELD name="colours"

datatype="char"

arraysize="*" xtype="strings"/>

...

<TD>Red|Purple|Blue</TD>

<TD>Green|Cyan|Black</TD>

String arrays in VOTable are a pain.
• VOTable datatype char is a single character; there is no fundamental string datatype (following FITS)

▷ Encode a string as a 1-d character array
◦ may be fixed-length string (arraysize="8")

or variable-length string (arraysize="*")

▷ Encode a 1-d array of strings as a (rectangular) 2-d character array

◦ may be fixed-length array of fixed-length strings (arraysize="8x3")
or variable-length array of fixed-length strings (arraysize="8x*")

◦ may not be array of variable-length strings (only last dimension can vary)

• But array of variable-length strings is often what you want

▷ Otherwise you have to count all string lengths up front

• Also: assembling string arrays into rectangular char arrays is fiddly

▷ especially with the UTF-8 encoding rule proposed for VOTable 1.6

Alternative: encode 1-d string arrays using delimiters
• See DALI issue #66

• Still experimental

• Currently: delimiter “|” with some escaping mechanism

• Basic VOTable reader reads string, aware VOTable reader reads array

• Doesn’t help with higher-dimensional string arrays ... but they are rare

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 11/12

https://github.com/ivoa-std/DALI/issues/66

Roadmap

Suggested next steps:

• Start preparing VOTable 1.6

▷ Invite final mailing list comments on PR #71 (Unicode)

▷ Prepare PRs for issues #26 (MIME type content parameter), #53 (review Appendix A)

▷ Address editorial issues

▷ VOTable 1.6 WD by next Interop?

▷ Lead editor: Mark T (discussed with Tom D)

• Prepare Erratum on Unicode PARAM/INFO content?

• Prototype/experiment with xtype="strings" → DALI-next?

Comments?

Mark Taylor, VOTable Future, IVOA Interop, Görlitz, 15 November 2025 12/12

https://github.com/ivoa-std/VOTable/pull/71
https://github.com/ivoa-std/VOTable/issues/26
https://github.com/ivoa-std/VOTable/issues/53

