
1ESA UNCLASSIFIED – Releasable to the Public

IVOA November 2025 Interoperability Meeting

J. Osinde1, I. León2

C. Ríos1, R. Parejo1, J. Ballester1, A.Alonso1

R. Bhatawdekar3

SCO-08: Archives Software Development

ESAC

Camino Bajo del Castillo s/n, Urb. Villafranca Del Castillo

28692 Villanueva de la Cañada (Madrid) Spain
1Starion for ESA, 2AURORA Technology B.V, 3ESA

ESAC TAP stateless follow up

2

The goal: Key Advantages of Stateless, Scalable Service Architectures

• Easy Horizontal Scalability: Since each instance is independent and doesn’t rely on local or

local session state, you can easily add or remove instances based on load.

• Simplified Load Balancing: Any request can be routed to any instance, since all instances are

functionally identical

• High Availability and Fault Tolerance: If one instance fails, others can continue processing

requests without interruption.

• Easier Deployment and Rolling Updates: Stateless services don’t depend on persistent in-

memory state, so you can deploy new versions without disrupting ongoing sessions

3

But … TAP is not a stateless service

• Active session

• Functionality managed by Spring Session library

• Events

• User log, Job creation/running/done, shared resources, quota updates and system wide

notifications

• User status

• Task monitor feedback (table uploads, x-match jobs, format conversions, etc)

• User parameters

• Roles, timeout values, disk and memory quotes

• One entry per user in the system

44

TAP Stateful layout

Users

TAP instance

...

Other services

(Authentication, Authorization, …)

Archive database

55

TAP Stateful layout + Application state

Users

TAP instance

...

App

State

Archive database

Other services

(Authentication, Authorization, …)

66

TAP Stateless layout

Users

Load balancer

TAP instances
Archive database

...
...

Other services

(Authentication, Authorization, …)

7

How to share this information

• The TAP service was refactored to extract this information from the application itself.

• Now the question was: where do we put it?

• The first (and most obvious) option was to store it in the database:

• It’s structured information and the database is already a central part of the system

• All instances read and write to the same database, ensuring consistency across the system.

• Makes synchronization mechanisms unnecessary at the application level

• Common data (e.g., configuration, metadata, usage counters) is instantly available to all instances.

• New instances can start up and access the same information without replication or reloading

• The database guarantees data persistence across restarts, deployments, or crashes

• Databases handle concurrent access, locking, and transactions reliably.

• Ensures updates to shared information are atomic and conflict-free

• Avoids introducing additional systems, simplifies infrastructure and reduces maintenance overhead

88

TAP Stateless layout + Application state

Users

Load balancer

TAP instances
Archive database

...
...

App

State

Other services

(Authentication, Authorization, …)

9

How to share this information

• The TAP service was refactored to extract this information from the application itself.

• Now the question was: where do we put it?

• The first (and most obvious) option was to store it in the database:

• It’s structured information and the database is already a central part of the system

• All instances read and write to the same database, ensuring consistency across the system.

• Makes synchronization mechanisms unnecessary at the application level

• Common data (e.g., configuration, metadata, usage counters) is instantly available to all instances.

• New instances can start up and access the same information without replication or reloading

• The database guarantees data persistence across restarts, deployments, or crashes

• Databases handle concurrent access, locking, and transactions reliably.

• Ensures updates to shared information are atomic and conflict-free

• Avoids introducing additional systems simplifies infrastructure and reduces maintenance overhead

1010

From Transactions to Analytics: Databases in ESDC

• ESDC relies in PostgreSQL databases

• Fit for OLTP (Online Transactions Processing)

• Ideal for small, frequent transactions

• Not so fit for OLAP (Online Analytical Processing)

• Best fit for data analysis with huge queries

• ESDC Archives have started to store big data

• GAIA, Euclid, PLATO, …

• DB of choice for big data archives has been Greenplum

• Very good choice for OLAP (analytical, huge queries)

• Bad choice for OLTP (small, frequent transactions)

11

Why the Database Wasn’t the Right Place After All

In Practice, this approach was not as Effective as Expected:

• The CAS login protocol interfered with the Spring session handling, causing duplicate events to

be created and stored in the database almost simultaneously.

• Some processes generated multiple events in parallel, and the database couldn’t handle them

efficiently, resulting in concurrency conflicts and performance bottlenecks.

• On top of that, matching the speed of an in-memory approach proved difficult. For critical

operations, even a small delay became more significant than expected.

What are now the alternatives?

1212

TAP Stateless layout + Application state

Users

Load balancer

TAP instances
Archive database

...
...

App

State

Other services

(A&A, in-memory data services)

13

• Store and access data directly in memory for ultra-fast read/write operations.

• Use Cases:

• Caching frequently accessed data

• Session storage for web applications

• Message brokering (pub/sub systems)

• Advantages:

• Extremely low latency and high throughput

• Reduces load on traditional databases

• Supports high concurrency and parallel access

• Considerations:

• Data is volatile unless explicitly persisted

In-Memory Databases: Fast, Reliable, and Scalable I

14

In-Memory Services: Options and Considerations

• Popular Services:

• Redis – Key-value store, supports persistence, pub/sub, and advanced data structures.

• Memcached – Simple caching for temporary data.

• Hazelcast / Apache Ignite – In-memory data grids for distributed applications.

• Implications of Adding an In-Memory Service

• New service added → introduces an additional point of failure.

• Data strategy: Decide carefully what data goes in-memory vs. what stays in the database.

• Management overhead: Start/stop, monitoring, and upgrades must be handled.

• Deployment strategy:

• One instance per Archive

• Isolates failures between archives

• One instance for the entire ESDC

• Reduces management burden.

• This component is more critical to system reliability, although similar approaches are used for other

services (e.g., LDAP for authentication)

15

System Tests — Still a Crucial Part of the Software

• Always include stress tests as part of the validation process:

• Reproduce heavy-load scenarios to assess real-world behavior.

• The system must remain robust under stress.

• Performance degradation should stay within tolerable limits.

• Use cases should be tested in realistic environments:

• Even the database version used during testing can have a significant impact.

• Performance considerations alone can cause a release to fail:

• Define clear and measurable performance requirements early on.

16

What is the scenario we want to deal with?

1717

Questions / feedback

Thank you for your attention

	Slide 1: ESAC TAP stateless follow up
	Slide 2: The goal: Key Advantages of Stateless, Scalable Service Architectures
	Slide 3: But … TAP is not a stateless service
	Slide 4: TAP Stateful layout
	Slide 5: TAP Stateful layout + Application state
	Slide 6: TAP Stateless layout
	Slide 7: How to share this information
	Slide 8: TAP Stateless layout + Application state
	Slide 9: How to share this information
	Slide 10: From Transactions to Analytics: Databases in ESDC
	Slide 11: Why the Database Wasn’t the Right Place After All
	Slide 12: TAP Stateless layout + Application state
	Slide 13: In-Memory Databases: Fast, Reliable, and Scalable I
	Slide 14: In-Memory Services: Options and Considerations
	Slide 15: System Tests — Still a Crucial Part of the Software
	Slide 16: What is the scenario we want to deal with?
	Slide 17: Questions / feedback

