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The goal: Key Advantages of Stateless, Scalable Service Architectures

• Easy Horizontal Scalability:  Since each instance is independent and doesn’t rely on local or 

local session state, you can easily add or remove instances based on load.

• Simplified Load Balancing: Any request can be routed to any instance, since all instances are 

functionally identical

• High Availability and Fault Tolerance: If one instance fails, others can continue processing 

requests without interruption.

• Easier Deployment and Rolling Updates: Stateless services don’t depend on persistent in-

memory state, so you can deploy new versions without disrupting ongoing sessions
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But … TAP is not a stateless service

• Active session

• Functionality managed by Spring Session library

• Events

• User log, Job creation/running/done, shared resources, quota updates and system wide 

notifications

• User status

• Task monitor feedback (table uploads, x-match jobs, format conversions, etc)

• User parameters

• Roles, timeout values, disk and memory quotes

• One entry per user in the system
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TAP Stateful layout
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TAP Stateful layout + Application state
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TAP Stateless layout
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How to share this information

• The TAP service was refactored to extract this information from the application itself.

• Now the question was: where do we put it?

• The first (and most obvious) option was to store it in the database: 

• It’s structured information and the database is already a central part of the system

• All instances read and write to the same database, ensuring consistency across the system.

• Makes synchronization mechanisms unnecessary at the application level

• Common data (e.g., configuration, metadata, usage counters) is instantly available to all instances.

• New instances can start up and access the same information without replication or reloading

• The database guarantees data persistence across restarts, deployments, or crashes

• Databases handle concurrent access, locking, and transactions reliably.

• Ensures updates to shared information are atomic and conflict-free

• Avoids introducing additional systems, simplifies infrastructure and reduces maintenance overhead
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TAP Stateless layout + Application state
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From Transactions to Analytics: Databases in ESDC

• ESDC relies in PostgreSQL databases

• Fit for OLTP (Online Transactions Processing)

• Ideal for small, frequent transactions

• Not so fit for OLAP (Online Analytical Processing)

• Best fit for data analysis with huge queries

•  ESDC Archives have started to store big data 

• GAIA, Euclid, PLATO, …

• DB of choice for big data archives has been Greenplum

• Very good choice for OLAP (analytical, huge queries)

• Bad choice for OLTP (small, frequent transactions) 
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Why the Database Wasn’t the Right Place After All

In Practice, this approach was not as Effective as Expected:

• The CAS login protocol interfered with the Spring session handling, causing duplicate events to 

be created and stored in the database almost simultaneously.

• Some processes generated multiple events in parallel, and the database couldn’t handle them 

efficiently, resulting in concurrency conflicts and performance bottlenecks.

• On top of that, matching the speed of an in-memory approach proved difficult. For critical 

operations, even a small delay became more significant than expected.

What are now the alternatives?
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TAP Stateless layout + Application state
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• Store and access data directly in memory for ultra-fast read/write operations.

• Use Cases:

• Caching frequently accessed data

• Session storage for web applications

• Message brokering (pub/sub systems)

• Advantages:

• Extremely low latency and high throughput

• Reduces load on traditional databases

• Supports high concurrency and parallel access

• Considerations:

• Data is volatile unless explicitly persisted

In-Memory Databases: Fast, Reliable, and Scalable I
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In-Memory Services: Options and Considerations

• Popular Services:

• Redis – Key-value store, supports persistence, pub/sub, and advanced data structures.

• Memcached – Simple caching for temporary data.

• Hazelcast / Apache Ignite – In-memory data grids for distributed applications.

• Implications of Adding an In-Memory Service

• New service added → introduces an additional point of failure.

• Data strategy: Decide carefully what data goes in-memory vs. what stays in the database.

• Management overhead: Start/stop, monitoring, and upgrades must be handled.

• Deployment strategy:

• One instance per Archive 

• Isolates failures between archives

• One instance for the entire ESDC

• Reduces management burden.

• This component is more critical to system reliability, although similar approaches are used for other 

services (e.g., LDAP for authentication)
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System Tests — Still a Crucial Part of the Software

• Always include stress tests as part of the validation process:

• Reproduce heavy-load scenarios to assess real-world behavior.

• The system must remain robust under stress.

• Performance degradation should stay within tolerable limits.

• Use cases should be tested in realistic environments:

• Even the database version used during testing can have a significant impact.

• Performance considerations alone can cause a release to fail:

• Define clear and measurable performance requirements early on.
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What is the scenario we want to deal with?
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Questions / feedback

Thank you for your attention
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