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The Rise of The Foundation Model Paradigm Polymathlc

e Foundation Model approach

= Pretrain models on pretext tasks, without
supervision, on very large scale datasets.
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= Pretrain models on pretext tasks, without
supervision, on very large scale datasets.

= Adapt pretrained models to downstream

tasks.
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‘ The Advantage of Scale of Data and Compute
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| What This New Paradigm Could Mean for Us Polymathic

e Never have to retrain my own neural networks from scratch

® Existing pre-trained models would already be near optimal, no matter the task at hand
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| What This New Paradigm Could Mean for Us Polymathic

e Never have to retrain my own neural networks from scratch

® Existing pre-trained models would already be near optimal, no matter the task at hand

e Practical large scale Deep Learning even in very few example regime

m Searching for very rare objects in large surveys like Euclid or LSST becomes possible

e |[fthe information is embedded in a space where it becomes linearly accessible,
very simple analysis tools are enough for downstream analysis

® |nthe future, survey pipelines may add vector embedding of detected objects into
catalogs, these would be enough for most tasks, without the need to go back to pixels

4.2
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AstroCLIP

Cross-Modal Pre-Training for Astronomical
Foundation Models

astro-ph.IM arXiv:2310.03024

Project led by Liam Parker, Francois Lanusse, Leopoldo Sarra, Siavash Golkar, Miles Cranmer Oly I I I at 1C

Accepted contribution at the NeurlPS 2023 Al4Science Workshop

Published in the Monthly Notices of Royal Astronomical Society 5



‘ The AstroCLIP approach Polymathlc

e We use spectra and multi-band images as
our two different views for the same

| ‘ underlying object.
{ | e DESI Legacy Surveys (g,r,z)images, and DESI

EDR galaxy spectra.
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| The AstroCLIP approach Polymathic

e We use spectra and multi-band images as
our two different views for the same

r‘LN | underlying object.
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‘ Evaluation of the model: Parameter Inference

ResNet18 Photometry
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‘ Evaluation of the model: Parameter Inference

e Redshift Estimation From Images

AstroCLIP DINO Image
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e Zero-shot prediction

= k-NN regression

7.1
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| The AION-1 Data Pile Polymathic
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| The AION-1 Data Pile
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| The AION-1 Data Pile Polymathic
Cuts: parallax / parallax_error > 10

(Gaia Satellite. Credit: ESA/ATG)
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‘ Standardizing all modalities through tokenization

e For each modality category (e.g. image,
spectrum) we build dedicated tokenizers
=> Convert from any data to discrete tokens

(Mentzer et al. 2023)

vQ FSQ
Quantization argmin_c || z-c || round(f(z))
Gradients Straight Through Estimation (STE) STE
Auxiliary Losses = Commitment, codebook, entropy loss, ... N/A
Tricks EMA on codebook, codebook splitting, projections, ...  N/A

Parameters Codebook MN/A 10


https://arxiv.org/abs/2309.15505
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‘ Standardizing all modalities through tokenization

e For each modality category (e.g. image,
spectrum) we build dedicated tokenizers
=> Convert from any data to discrete tokens
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Decoder

I9poouy

‘ Standardizing all modalities through tokenization
e For Aion-1, we integrate 39 different

e For each modality category (e.g. image,
spectrum) we build dedicated tokenizers
=> Convert from any data to discrete tokens
modalities (different instruments, different

Images Spectra measurements, etc.)
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Any-to-Any Modeling with Generative Masked Modeling Polymathic

[l 13
E s
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e Given standardized and cross-matched dataset, we can feed the data to a large Transformer
Encoder Decoder

= Flexible to any combination of input data, can be prompted to generate any output.

11
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e Given standardized and cross-matched dataset, we can feed the data to a large Transformer
Encoder Decoder

= Flexible to any combination of input data, can be prompted to generate any output.

e Model is trained by cross-modal generative masked modeling
=> Learns the joint and all conditional distributions of provided modalities: Vm,n  po(Tm|Tn )i



| Morphology classification by Linear Probing Polymathic

Example images of each class from Galaxy1l0 DECals

Disturbed

Merging Round Smooth In-between Round Smooth Cigar Round Smooth

Morphology Classification

Barred Spiral Unbarred Tight Spiral Unbarred Loose Spiral Edge-on without Bulge Edge-on with Bulge HD =
—
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e
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_ . o 75 -
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o
Galaxyl0 DECals: Henry Leung/Jo Bovy 2021, Data: DECals/Galaxy Zoo
—@— AION-B
65 - —@— AION-L
—8— AION-XL
—&— Supervised Baseline

| I 1 | 1 | |
1000 2000 3000 4000 5000 6000 7000
Training Set Size
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| Morphology classification by Linear Probing Polymathic

Example images of each class from Galaxy1l0 DECals

Disturbed

Merging Round Smooth In-between Round Smooth Cigar Round Smooth

Morphology Classification

Barred Spiral Unbarred Tight Spiral Unbarred Loose Spiral Edge-on without Bulge Edge-on with Bulge HD .
-
_ . & 75 -
. al
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o
| < 70 -
Galaxyl0 DECals: Henry Leung/Jo Bovy 2021, Data: DECals/Galaxy Zoo
-@— AION-B
65 - —@— AION-L
ATON-1.XL 8- AION-XL
ON-1- —&— Supervised Baseline
Trained on->  Legacy Survey 86.99 | | | | : | |
Evalon-> HSC 85.91 1000 2000 3000 4000 5000 6000 7000

Training Set Size
Table 5: Transfer accuracy (1) of AION-1 models on

morphology classification. 121
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‘ Physical parameter estimation and data fusion

Z, R? = 0.815 logM*, R2 = 0.774
0.6 4 ';-’!
L{*I
Inputs: > -
T 0.4
measured fluxes 2 031
i

—— T T T
0.0 0.2 0.4 0.6 8 10 12
DESI PROVABGS DESI PROVABGS
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‘ Physical parameter estimation and data fusion

Z, R? = 0.815 logM*, R2 = 0.774
0.6 1
Inputs: >
T 0.4
measured fluxes 2 031
i

0.0 !’ = T T T 7 T T T
0.0 0.2 0.4 0.6 8 10 12
DESI PROVABGS DESI PROVABGS
Z, R2 = 0.940 logM*, R2 = 0.888
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Polymathic
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‘ Physical parameter estimation and data fusion

Z, R? = 0.815 logM*, R2 = 0.774
0.6 4 ';-’!
Inputs: >
T 0.4
measured fluxes 2 031
i

0.1
0.0 !’ = T T 7 T T T
0.0 0.2 0.4 0.6 8 10 12
DESI PROVABGS DESI PROVABGS
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Galaxy Property Regression

—@— AION-B
—@— AION-L
~@— AION-XL

—&— Supervised Baseline

102

LR | ¥ LR | ! L |
10 101 107
Training Set Size
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‘ Example-based retrieval from mean pooling

Query Similarity Search Results

Spiral

Merger

Rank 6 Rank 50

®

Strong Lensing

14



Where do we get
the data to train
these models?



‘ The Scientific Data Curation Challenge Polymathic

Dataset # English Img-Txt Pairs
Public Datasets
MS-COCO 330K
CC3M aM
Visual Genome 5.4M
WIT 5.5M
CcCi1z2M 12M
RedCaps 12M
YFCC100M 100M?
LATON-5B (Ours) 2.3B
Private Datasets
CLIP WIT (OpenAl) 400M
ALIGN 1.8B
BASIC 6.68

Schuhmann et al. (2022)

e Success of foundation models is driven by large corpora of uniform data (e.g LAION 5B).

16
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‘ The Scientific Data Curation Challenge Polymathic

“ < -
HsCssP) ¥ & CANDELS

Credit: Melchior et al. 2021

e Success of foundation models is driven by large corpora of uniform data (e.g LAION 5B).
e Scientific data comes with many additional challenges:

m Metadata matters

16.1
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‘ The Scientific Data Curation Challenge

Polymathic

600 [ 700 -
Wavelength (nm)

HSCssPl”  “ @ w & ~ CANDELS

Credit: Melchior et al. 2021 Credit:DESI collaboration/DESI Legacy Imaging Surveys/LBNL/DOE & KPNO/CTIO/NOIRLab/NSF/AURA/unWISE

e Success of foundation models is driven by large corpora of uniform data (e.g LAION 5B).
e Scientific data comes with many additional challenges:

= Metadata matters
= Wide variety of measurements/observations
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‘ The Scientific Data Curation Challenge

Polymathic
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e Success of foundation models is driven by large corpora of uniform data (e.g LAION 5B).
e Scientific data comes with many additional challenges:

= Metadata matters
= Wide variety of measurements/observations
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The Multimodal Universe
Enabling Large-Scale Machine Learning with

100TBs of Astronomical Scientific Data
< arXiv 2412.02527 [l Neurlps 1Y DY @ TISRRPET
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https://openreview.net/forum?id=EWm9zR5Qy1
https://arxiv.org/abs/2412.02527
https://github.com/MultimodalUniverse/MultimodalUniverse

The MultiModal Universe Project

e Goal: Assemble the first large-scale multi-modal dataset
for machine learning in astrophysics.

:
Polymathic

ERELEFEE]  Ho Emission (Star Formation) D4000 (Stellar Age)

Hyperspectral Imaqes fmm MaNGH

B -\

(ki ald £ [ E
e (IO

.J .i Time series of supernovae

JWST Images and stellar variability 18




A Ve M BN E N T
U il RNV Sca ¥ P T

The MultiModal Universe Project

e Goal: Assemble the first large-scale multi-modal dataset
for machine learning in astrophysics.
e Mainpillars:

= Engage with a broad community of Al+Astro experts.

= Adopt standardized conventions for storing and
accessing data and metadata through mainstream
tools (e.g. Hugging Face Datasets).

= Target large astronomical surveys, varied types of
instruments, many different astrophysics sub-fields.

Msleialsiel s Nls/elsls

.J .i Time series of supernovae
and stellar variability

JWST Images “18.1
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The MultiModal Universe Project

e Goal: Assemble the first large-scale multi-modal dataset
for machine learning in astrophysics.
e Mainpillars:

= Engage with a broad community of Al+Astro experts.

= Adopt standardized conventions for storing and
accessing data and metadata through mainstream
tools (e.g. Hugging Face Datasets).

= Target large astronomical surveys, varied types of
instruments, many different astrophysics sub-fields.
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Multiband images from Legacy Survey JWST Images

frre

Time series of supernovae

and stellar variability Vigo



MMU Infrastructure POIYmﬂtth

Collection of surveys Download scripts - .
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Data curation Multi-modal

process dataset
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w  Cross-matching
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‘ Content of v1

Polymathic

Modality

Images

Spectra

Hyperspectral Image

Time Series

Tabular

Source Survey

Legacy Surveys DR10 [43]

Legacy Surveys North [43, 134]

HSC [5, 3]

BTS [56, 114, 120]
JWSTI[13, 14, 50]

Gaia BP/RP [59]
SDSS-IT [1]

DESI [41]

APOGEE SDSS-III [6]
GALAH [25]

Chandra [51]

VIPERS [126]

MaNGA SDSS-1V [2]
PLAsTiCC?[138]

TESS [121, 33]

CfA Sample [68, 69, 18, 70]
YSE [7]

PS1 SNe Ia [127]

DES Y3 SNe Ia [24]
SNLS [63]

Foundation [53, 81]

CSP SNe Ia [36, 135, 86]
Swift SNe Ia[26]

Gaia [59]

PROVABGS [65]
Galaxyl0 DECaLS [147, 92]

Z

'i'.l-'l"l
[
'—I.

R = R 4 =]

Shape

160x 160
152x 152
160x 160
63x63
96 x 96
110*
Variable
7081
7514
Variable
Variable
557
96 %96
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

Number of
samples

124M
15M
477K
400K
J00K
220M
AM
1M
716k
325k
129K
91K
12k
3.5M
1M
1K
2K
369
248
239
180
134
117
220M
221K
16K

Main
science
Galaxies
Galaxies
Galaxies
Supernovae
Galaxies

Stars

Galaxies, Stars

Galaxies
Stars
Stars

Galaxies, Stars

Galaxies
Galaxies

Time-varying objects
Exoplanets, Stars

Supernovae
Supernovae
Supernovae
Supernovae
Supernovae
Supernovae
Supernovae
Supernovae
Stars
Galaxy
Galaxy

20
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‘ Data schema and storage

e For each example MMU expects a few
mandatory fields:

= object_id, ra, dec

21
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‘ Data schema and storage

Table 2: Description of standardized fields and metadata provided for the main modalities. These
fields represent necessary and near-sufficient information to allow for the consistent interpretation of
observations from multiple surveys or instruments.

e For each example MMU expects a few
mandatory fields:

Modality Field Description
. . flux Array of flux measurements of the image
u ObJeCt_|d, Ira, deC ivar Inverse variance of noise in the image
Images band Key indicating the wavelength range of the image
psf _fwhm Size of the instrumental response (Point Spread Function)
scale Scale of pixels on the sky
Aux Measured flux as a function of wavelength
Spectra ivar Inverse variance of noise on measured flux
[ For eaCh moda | |ty, M M U eXpeCtS the Isf sigma  Size of the instrumental response (Line Spread Function)
lambda  Wavelength of each flux measurement
d ata to be formatted according to a flux Measurements of flux as a function of time
Time flux_err  Uncertainty on flux measurement
ﬁxed SChem a Which only Contains Series band Key indicating the wavelength range of the measurement
time Time of observation

strictly necessary metadata.

21.1



‘ Data schema and storage

e For each example MMU expects a few
mandatory fields:

= object_id, ra, dec

e For each modality, MMU expects the
data to be formatted according to a
fixed schema which only contains
strictly necessary metadata.

e Datais stored in HDF5 files, split
according to HEALPIx regions for
efficient cross-matching and easy
access

Polymathic

Table 2: Description of standardized fields and metadata provided for the main modalities. These
fields represent necessary and near-sufficient information to allow for the consistent interpretation of
observations from multiple surveys or instruments.

Modality Field Description
flux Array of flux measurements of the image
ivar Inverse variance of noise in the image
Images band Key indicating the wavelength range of the image
psf _fwhm Size of the instrumental response (Point Spread Function)
scale Scale of pixels on the sky
flux Measured flux as a function of wavelength
Spectra ivar Inverse variance of noise on measured flux
Isf sigma  Size of the instrumental response (Line Spread Function)
lambda Wavelength of each flux measurement
flux Measurements of flux as a function of time
Time flux_err  Uncertainty on flux measurement
Series band Key indicating the wavelength range of the measurement
time Time of observation

hsc
hsc.py
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= Hugging Face Models
£3 legacysuxuey Un| 2 like Following £5 Multimodal Universe
B Image Text % parquet 10K - 100K 1804.08657
Dataset card Data Studio Files and versions <(xet Community Settings

B Dataset Viewer

Split(1)

train - 90,6k rows ~
image blobmodel rgh
SEquUeENnce :rage :Tage

{"band":["des-g","des-x","des-1","des-z"],"flux":
[[[&.0e07380799504790936, -0, 00016050622798502445 0. ..

f"band" :["des-g","des-r","des-1i", "des-z"],"flux":
[[[0.0e069914709846946 , 0. ODOBE390929158777, -0. DORER..

{"band":["des-g","des-x","des-1","des-z"],"flux":
[[[@.0026036326307803392,0.002823472488671541,-0.00..

f"band" :["des-g","des-r","des-1i", "des-z"],"flux":
[[[®.0295600892836618423,0.02978307381272316,0.02261..

4

2 3 50 206

Next

object_mask
image

Datasets Spaces Community Docs Enterprise  Pricing

Datasets # Dask & Croissant

Embed M Data Studio Downloads last month 530

Wiew full history

</» Use this dataset # Editdataset card
catalog -
Sequence

64.5 GB

54.5 GB 90,580
I"FLUX_G":

[1.3640B868663787842,¢

TUELUX_G": Models trained or fine-tuned on MultimodallUniv..

[0.5193391442298889, ¢

B polymathic-ai/aion-base
I"FLUX_G"*
[0.5193391442298889, ¢

1"FLUX_G":
[0.9414768218994141 ¢

o
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Usage example

datasets load dataset

dset 1s load_dataset("MultimodalUniverse/legacysurvey",
streaming=True,
split="train')

dset 1s dset ls.with format("numpy")

dset iterator = iter(dset 1ls)

0O o O WN -

example = next(dset iterator)
dict keys(['image', 'blobmodel', 'rgb',
'object mask', 'catalog', 'EBV', 'FLUX G',

print (example.keys()) 'FLUX R', 'FLUX I', 'FLUX Z', 'FLUX Wl1',
'FLUX W2', 'FLUX W3', 'FLUX W4', 'SHAPE R',
figure(figsize=(12,5)) 'SHAPE E1', 'SHAPE E2', 'object id'])
I o enumerate (example[ 'image' ][ 'band']):

subplot(1l,4,i+1)

title(f'{b}")

imshow(example[ 'image' ][ 'flux'][i], cmap='gray r')

axis('off'")

des-g des-r des-i des-z
; . . R .
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https://colab.research.google.com/github/MultimodalUniverse/MultimodalUniverse/blob/main/notebooks/getting_started.ipynb

‘ Some considerations for Al pre-training

e Design should facilitate streaming tensors to GPUs in conventional frameworks (e.g. Hugging
Face Datasets or similar)
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®  Neural networks will automatically learn to interpret the relative difference between datasets
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‘ Some considerations for Al pre-training

Design should facilitate streaming tensors to GPUs in conventional frameworks (e.g. Hugging

Face Datasets or similar)

Homogeneity is good but does not have to be imposed across data sources

B j.e.images can have different pixel scale, normalizations, etc... as long as provenance is somehow captured alongside the data.

®  Neural networks will automatically learn to interpret the relative difference between datasets

Multimodal training requires cross-matching across surveys

B |mplies a strategy to obtain O(1000) postage stamps per seconds between 2 surveys

B With MMU and training AION-1 this cross-matching is done offline: slow, not very flexible

Versionning and production of static curated datasets is challenging

B Requires alocal copy of all datasets (postage stamps APIs of most surveys are not fast enough to support generating millions of
stamps), non trivial storage, and non trivial compute.

B MMU contains 120TB of data, versionning that data and incremental additions is not trivial to manage.
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Thank you for listening!

Follow us online
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https://twitter.com/PolymathicAI
https://polymathic-ai.org/
https://github.com/PolymathicAI

