
VO-DML 1.1 and VO-DML
Tool Updates
Paul Harrison (JBO/UKSRC)
IVOA Interop Northern Autumn 2025

1

Introduction

VO-DML Tools introduced in previous Interop talks now quite mature.
Has already introduced some extensions to VO-DML that have
are being included in VO-DML 1.1
New draft (Endorsed?) Note on VO-DML tools

This presentation
Updates on the VO-DML tooling (since last Interop)
Structure of VO-DML 1.1 WD - invitation for comment
Why VO-DML tools are essential for creating a standard DM
We need to talk about UTypes

2

https://ivoa.github.io/vo-dml/

https://github.com/ivoa/vo-dml/
https://wiki.ivoa.net/twiki/bin/view/IVOA/InterOpNov2021DM
https://github.com/ivoa/vo-dml/releases/download/note-auto-pdf-preview/VodmlTools-draft.pdf
https://ivoa.github.io/vo-dml/

VO-DML Tooling Updates

Updates v0.5.10 when last reported - now v0.5.28 -
highlights include

TAPSchema generation
Support for local vocabularies

useful when developing a new vocabulary
Alternative prototype python packaging of the tools

still only a proof of concept as much restricted
functionality compared to the gradle tooling.

3

https://github.com/ivoa/vo-dml/blob/master/tools/ChangeLog.md
https://github.com/ivoa/vo-dml/tree/master/tools/pythontooling

TAPSchema
VO-DML tools can now produce a TAPSchema for a VO-DML
model as part of the output of ./gradlew vodmlSchema

Final part of the serialization triumvirate - much of the original
design of VO-DML and the constraints that were put on
structures in the meta-model was aimed at storing instances
in relational databases.

Because there was no obvious way to serialise a TAPSchema
in a vendor neutral way, a TAPSchemaDM was created in VO-
DML so that the serialization was “obvious”. The TAPSchema
is serialised as XML.

4

https://ivoa.github.io/TAPSchemaDM/

VO-DML 1.1 WD
Backwards compatible extensions (as required)

already tested in the deployed VO-DML Tools

Managed via GitHub milestones with PR for each feature

Main update for 1.1 on the 20-update-vo-dml-standard-document branch

Current “cumulative” WD (i.e. effect of accepting all the pull requests) is
also published on GitHub

Original 1.0 REC was written in Word - the 1.1 WD is in markdown (via an
automated conversion with pandoc)

might even produce yet another publishing option via pandoc
transforming markdown to LaTeX

5

https://github.com/ivoa/vo-dml/milestones
https://github.com/ivoa/vo-dml/tree/20-update-vo-dml-standard-document/doc/std
https://github.com/ivoa/vo-dml/releases/download/WD-1.1-proposed/VO-DML.pdf
https://github.com/ivoa/vo-dml/blob/20-update-vo-dml-standard-document/doc/std/VO-DML.md
https://pandoc.org

VO-DML 1.1 pull requests
Each pull request deals with a specific topic on its own
branch - can see in the pull request which branch and what
has been changed and discuss there.

VODML-ID normative
Updates to the base model
Update the SemanticConcept to explicitly refer to IVOA
Vocabularies
Natural Key constraint
Description of VO-DML Tools
Miscellaneous typographical updates

6

https://github.com/ivoa/vo-dml/pull/46
https://github.com/ivoa/vo-dml/pull/83
https://github.com/ivoa/vo-dml/pull/82
https://github.com/ivoa/vo-dml/pull/81
https://github.com/ivoa/vo-dml/pull/80
https://github.com/ivoa/vo-dml/pull/85

Serialisation
Appendix B in the 1.0 document describes how the model might be serialised

Current tooling attempts to produce a standard serialisation for XML and JSON
based on the UML above so that a single model instance serialisation will contain both the
content and references

references that are not otherwise “contained” are emitted in the references section
tooling creates both XML and JSON schema which can be used to validate model instances.

needs conventions (e.g. using @type in the json serialization)
there are design choices to be made to create the schema too.

TAP schema too as explained earlier

Proposal is to rewrite Appendix B to make clear that XML, JSON and TAPschema serialisations
are intended for interoperability, and thus “standard”.

Note that this form of serialisation is more suitable for writing REST web service interfaces for the
models than MIVOT - however, MIVOT has other use cases and is thus complementary and not a
“competitor”.

7

Model

ReferencesContent

XML vs JSON

Serialization 3 - Comparison

8

Generated Key

“natural” Key

typing

references to above

needs conventions for JSON

Standardization

We can write a formal document that defines all the binding rules, but it will take
a while - they are all encoded in the VO-DML Tools. Anyway the necessary
binding constructs are still a work in progress (and are documented on-line)

Think of VO-DML Tools in the same way as ivoatex - it is possible to obey all the
standards documentation rules (except that they have not all been documented)
without it, but using it produces more more uniformity, and is less work.

9

VO-DML
Model

TAPSchema

JSON Schema

XML Schema

Binding

Only available in
VO-DML Tools

needed for
interoperability

https://ivoa.github.io/vo-dml/Binding/

UTypes
Link a FIELD or PARAM with a data model element (VOTable)

Still not formally defined!
usage note (2013) illustrates inconsistent practice

Norman Gray’s analysis
attempt at formal definition stalled at WD 0.7 (2012)
VO-DML 1.1 only mentions UType once in main text

However VO-DML tools offer mechanised way to define UTypes -
Indeed it is needed for the TAPSchema

VO-DML 1.0 says manually specifying should only be used for
compatibility with existing UTypes

10

https://www.ivoa.net/documents/Notes/UTypesUsage/20130213/NOTE-utypes-usage-1.0-20130213.html
https://nxg.me.uk/note/2009/utype-questions/
https://wiki.ivoa.net/internal/IVOA/Utypes/WD-Utypes-0.7-20120523.pdf

UTypes Standardization
Open Issues (there are probably more!)

Done as part of VO-DML document or stand-alone?
Should it have parts (like UCDs)?

e.g. a model has luminosity (say photom:std.luminosity)- which
is a DataType (measure:measuredValue) with three attributes
(say, Value, Error and Unit) - then to mark up say the
“luminosity_error” column of a database with a UType it is
desirable to have both pieces of information represented.
photom:std.luminosity;measure:measuredValue.Error

something like this is required, especially if vodml-ID is
allowed to be arbitrary

It is unlikely to be compatible with all existing use.

11

Conclusion

VO-DML 1.1 REC is still a work in progress
though all changes have been thoroughly road-tested

code-first rather than document-first.

VO-DML tools should be used for developing data models
provides the concrete extra conventions that are needed
e.g. to “fill-in” the missing information needed to fully
interpret json.

UTypes - still more work required….

12

