

ESDC Statistics and LLM Crawlers

Rachana Bhatawdekar¹, Jos de Bruijne¹, Deborah Baines¹, Arnaud Masson¹, Mark Bentley¹, Guido de Marchi¹, Bruno Merin¹, Christophe Arviset¹, Hector Perez², and Ignacio Leon²

¹European Space Agency, ²Starion Group for ESA

IVOA Interop, Gorlitz, Germany, 15/11/2025

ESAC Science Data Centre (ESDC)

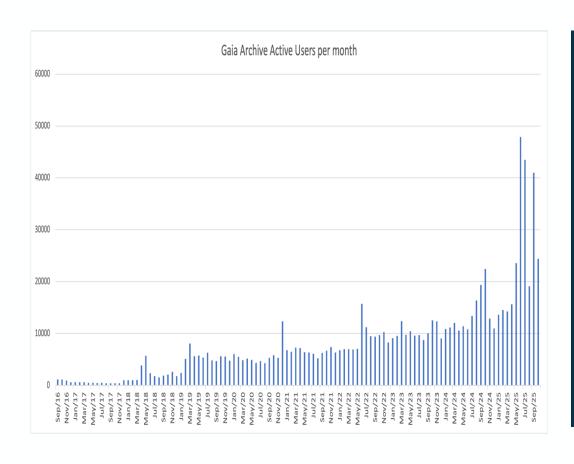
ESAC Science Data Centre (ESDC)

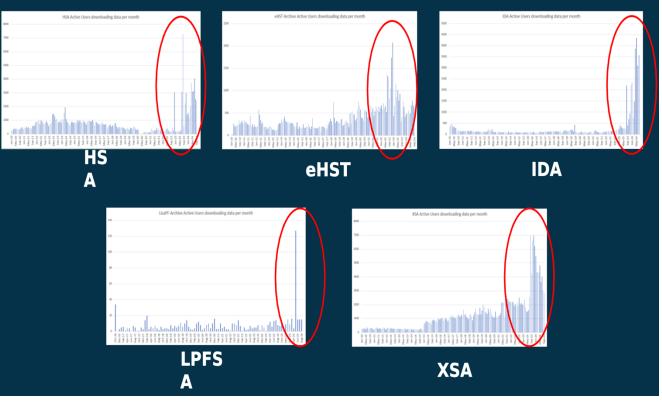
European Space Astronomy Center, ESAC Villanueva de la Canada, Madrid, Spain

We are supporting over 30 missions across astronomy, planetary, heliophysics, and human and robotic exploration domains.

Tracking Archive Usage Statistics at ESDC

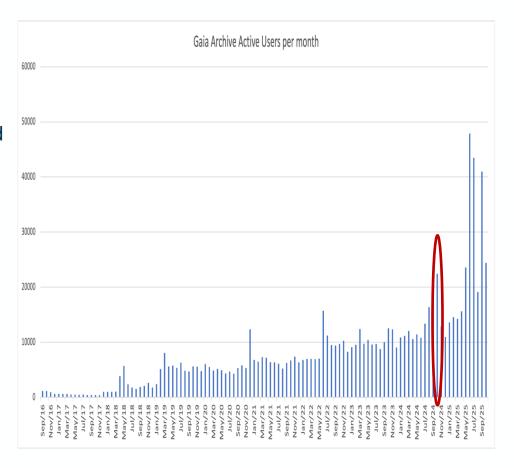
- ESDC archive usage has been monitored and reported for many years
- Figures are shared with missions, funding bodies, and the Science Programme Committee
- Defining usage metrics is challenging— missions differ in community size, data volume, user interaction
- ESDC tracks three metrics:
 - Total archive size
 - Number of active users (unique IPs),
 - Data download volume
- Sudden, unexpected increases in usage metrics


Large-Scale Non-Human Access



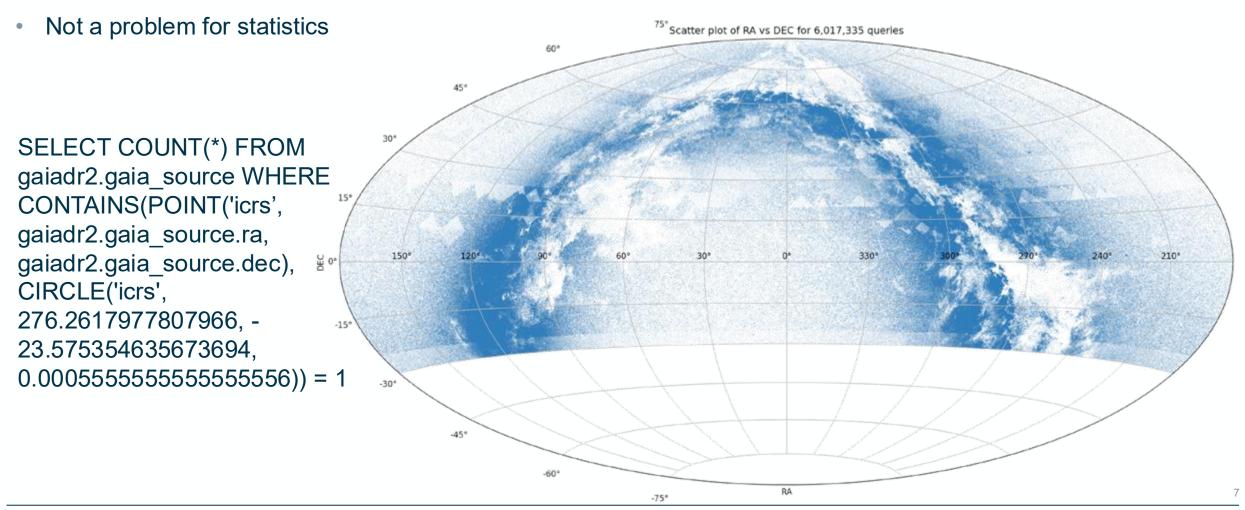
- Growing trend of automated, large-scale access to ESA's public science archives
- Many of these requests appear to come from LLM crawlers bots that harvest online data to train or improve
 Al systems
- These activities significantly distort web metrics, inflate usage statistics, and strain infrastructure.
- Other data centres (e.g., PDS, SETI, ISRO) already face this issue and have tried various mitigations (logins, Cloudflare, nightly reboots)
- New: CDS also reports the same phenomenon "Abuse of Service Crawling" poster presented this week at ADASS 2025

ESDC Archives usage statistics examples



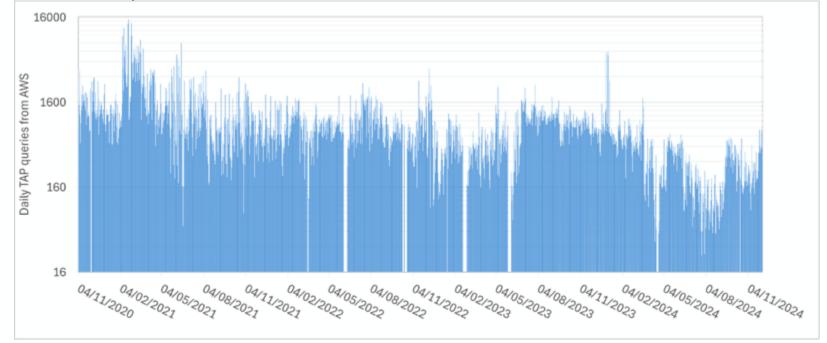
Astronomy Science Archive Statistics: Gaia as example

- Gaia ESA Archive usage (= query and download) statistics have always shown reasonable and credible numbers and trends
 - Peaks around data releases
 - Ever-growing interest from one data release to the next data release
 - Strong impact from Python query showers not a problem since linked to a single IP address
- Starting in summer 2024, the number of monthly unique IP addresses has shown unexplained peaks:
 - Amazon science cloud users a problem since artificially-multiplied numbers of unique IP addresses
 - Thousands of apparently "normal users" from Brazil a problem since these are disguised crawlers


"Al crawlers lie, change their user agent, use residential IP addresses as proxies, and more" [Al crawlers dominate traffic, forcing blocks on entire countries, arstechnica.com]

Gaia example of a Python query shower from one user

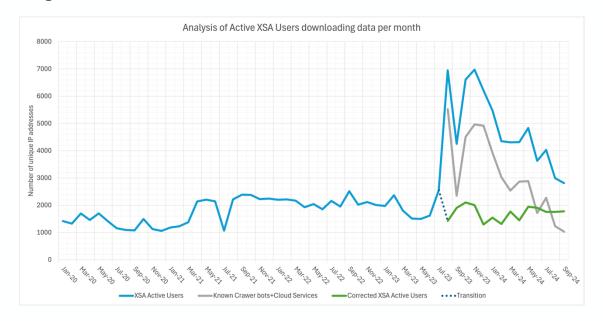
• One user, one IP address, 6,017,335 million ADQL cone-search queries launched over 9 days



Gaia example of an Amazon science cloud user

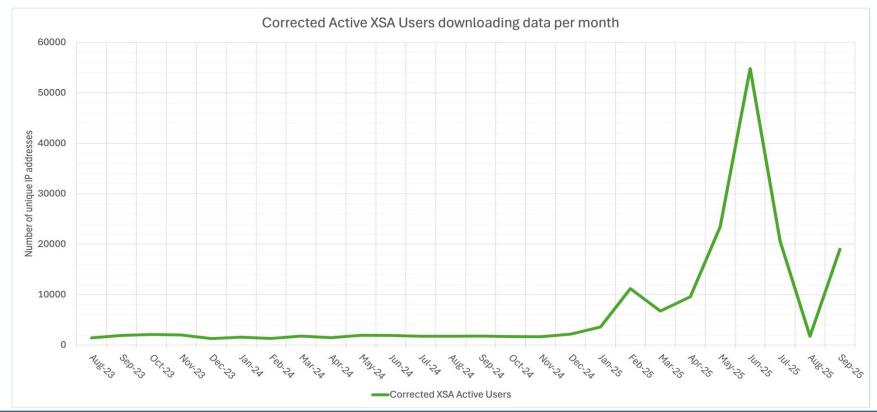
- One user, 8,022 IP addresses from Amazon Data Services Singapore (47.128.*), "only" 21,467 ADQL queries
- A problem for statistics:
 - July 2024: 27% of all unique IP addresses come from AWS and (presumably) a single user
 - August 2024: 38%

September 2024: 41%

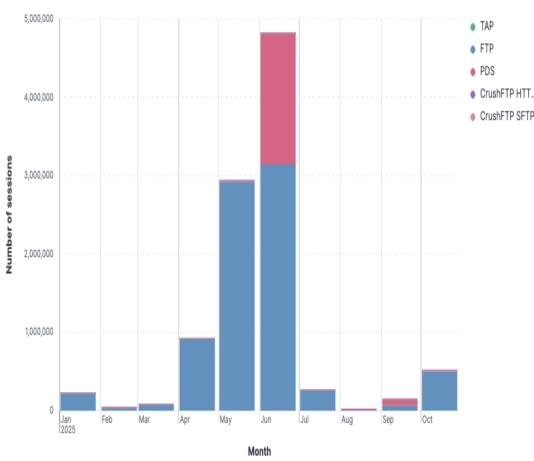


- Daily total number of TAP queries from AWS during 4 years
- No suspicious or excessive patterns → legitimate scientific use
- AWS, however, explodes the number of unique IP addresses from a single user

XMM-Newton Science Archive (XSA) example


- Before 2023, XMM-Newton Science Archive (XSA) statistics showed credible numbers and trends:
 - Consistent, gradual increase in active users over the years (by 2023 average users were ~1500/month)
- From August 2023:
 - Most web crawlers stopped reporting DNS names, providing only IP addresses, indicating a shift in access behaviour
 - Cloud providers start accessing the archive in large numbers.
- After removing the known web crawlers and cloud-based accesses, users statistics returned to pre-August 2023 levels.
- Problem solved?...

XMM-Newton Science Archive (XSA) example


- Problem solved? Not so fast, enter 2025:
 - The same issue observed in the Gaia archive appeared in the XSA: thousands of apparently "normal users", mainly from Brazil a problem since these are disguised crawlers.
 - Removing known web crawlers and cloud-based accesses is no longer solving the issue:

Planetary Science Archive Statistics

- Usage of the user interface and underling TAP service have mostly normal statistics
 - we see, for example, large spikes driven by (in particular) social media campaigns
- PSA also offers a simple web-directory of public data (for curl/wget type retrieval)
 - due to the very "web scrapable" nature of the interface, this
 is hit hard by non-human accesses
 - e.g. June 2025 recorded over 4 million unique IPs
- Analysis of the IPs, user agents, etc. lead us to suspect LLM crawlers masquerading as desktop browsers
 - clustering accesses to datasets in temporal bursts from many separate IPs
- So far system performance and reliability has not been dramatically reduced
 - but we continue to monitor, and expect the situation to only get worse

Heliophysics Science Archive Statistics

- Since 2021, sharp rise in IP connections for some (but not all) heliophysics archives
- New actors identified:
 - Likely LLM crawlers or download bots (often cloud-based)
 - Swarming access from many IPs in short bursts
 - Many disguise as normal browsers; others self-identify
- Possible link to publication of DOIs with direct data links
- Download volumes increased slightly connection numbers exploded
- Challenges: hard to detect, classify, and filter bots
- Impacts: distorted usage statistics and reduced service performance (DoS-type effects)

Possible Solutions?

- Apply some kind of rate-limiting
 - but the IPs used by the swarms are often located in similar geography or IP space
- Block IPs known to be problematic
 - but there are too many to make this manageable
- Use an external service to blacklist IPs (or at least remove from stats)
 - this works for low numbers of requests, but would be prohibitively expensive for e.g. https.
- Fight fire with fire, and develop some kind of ML technique to identify and filter out these "users"
- Restrict access to registered users
 - across all interface (UI, SFTP, APIs etc.)
 - probably the easiest mid-term solution
 - but a change to the ethos of data access in the space science archives...

IVOA experiences?

- Have other members experienced something similar?
- What solutions have you tried?
- How will you handle this going forward?